Ulysses has been the first spacecraft to explore the high latitudinal regions of the heliosphere till now. During its first rapid pole-to-pole transit from September 1994 to June 1995, Ulysses observed a fast speed fl...Ulysses has been the first spacecraft to explore the high latitudinal regions of the heliosphere till now. During its first rapid pole-to-pole transit from September 1994 to June 1995, Ulysses observed a fast speed flow with magnitude reaching 700—800 km/s at high latitudinal region except 20°area near the ecliptic plane where the velocity is 300—400 km/s. The observations also showed a sudden jump of the velocity across the two regions. In this note, based on the characteristic and representative observations of the solar magnetic field and K-coronal polarized brightness, the large-scale solar wind structure mentioned above is reproduced by using a three-dimensional MHD model. The numerical results are basically consistent with those of Ulysses observations. Our results also show that the distributions of magnetic field and plasma number density on the solar source surface play an important role in governing this structure. Furthermore, the three-dimensional MHD model used here has a robust ability to simulate this kind of large-scale wind structure.展开更多
Alfvn waves are found to be ubiquitous in the solar wind.Recent progress in observational studies of the waves is reviewed to formulate a microscopic picture for the Alfvenic fluctuations. The main aspects of the ob...Alfvn waves are found to be ubiquitous in the solar wind.Recent progress in observational studies of the waves is reviewed to formulate a microscopic picture for the Alfvenic fluctuations. The main aspects of the observational properties of these waves,including the wave intervals, propagation,evolution,origin and generation,are presented.Then Alfven wave heating and acceleration of the solar wind plasma are briefly introduced.The relation of the waves to rotational and tangential discontinuities,magnetic decreases,and other relatively large-scale structures such as flux tubes/ropes,magnetic clouds and interplanetary coronal mass ejections in the solar wind is particularly investigated.Finally,some remaining open questions are also indicated due to their fundamental importance of understanding of the physical nature of Alfven waves and the role of the waves in heating and accelerating the solar wind.展开更多
基金supported by the Innovative Project of Knowledge of the Chinese Academy of Sciences(CAS)the National Natural Science Foundation of China(Grant Nos.49990453 and 49974037)the"Hundred Talents"Project of the CAS and the National Major(grant No.G2000078405)Project of Basic Res earch
文摘Ulysses has been the first spacecraft to explore the high latitudinal regions of the heliosphere till now. During its first rapid pole-to-pole transit from September 1994 to June 1995, Ulysses observed a fast speed flow with magnitude reaching 700—800 km/s at high latitudinal region except 20°area near the ecliptic plane where the velocity is 300—400 km/s. The observations also showed a sudden jump of the velocity across the two regions. In this note, based on the characteristic and representative observations of the solar magnetic field and K-coronal polarized brightness, the large-scale solar wind structure mentioned above is reproduced by using a three-dimensional MHD model. The numerical results are basically consistent with those of Ulysses observations. Our results also show that the distributions of magnetic field and plasma number density on the solar source surface play an important role in governing this structure. Furthermore, the three-dimensional MHD model used here has a robust ability to simulate this kind of large-scale wind structure.
基金Supported by NSC grants to Prof.L.C.Lee in Taiwan(97-2111M-008-012-MY3 and 97-2811-M-008-039)PMO-NCU Cooperative Institutional Research Program,NSFC(10803020)the Opening Project of Key Laboratory of Solar Activity,CAS(KLSA201223)
文摘Alfvn waves are found to be ubiquitous in the solar wind.Recent progress in observational studies of the waves is reviewed to formulate a microscopic picture for the Alfvenic fluctuations. The main aspects of the observational properties of these waves,including the wave intervals, propagation,evolution,origin and generation,are presented.Then Alfven wave heating and acceleration of the solar wind plasma are briefly introduced.The relation of the waves to rotational and tangential discontinuities,magnetic decreases,and other relatively large-scale structures such as flux tubes/ropes,magnetic clouds and interplanetary coronal mass ejections in the solar wind is particularly investigated.Finally,some remaining open questions are also indicated due to their fundamental importance of understanding of the physical nature of Alfven waves and the role of the waves in heating and accelerating the solar wind.