The relationship between Solidago canadensis L. invasion and soil microbial community diversity including functional and structure diversities was studied across the invasive gradients varying from 0 to 40%, 80%, and ...The relationship between Solidago canadensis L. invasion and soil microbial community diversity including functional and structure diversities was studied across the invasive gradients varying from 0 to 40%, 80%, and 100% coverage of Solidago canadensis L. using sole carbon source utilization profiles analyses, principle component analysis (PCA) and phospholipid fatty acids (PLFA) profiles analyses. The results show the characteristics of soil microbial community functional and structure diversity in invaded soils strongly changed by Solidago canadensis L. invasion. Solidago canadensis L. invasion tended to result in higher substrate richness, and functional diversity. As compared to the native and ecotones, average utilization of specific substrate guilds of soil microbe was the highest in Solidago canadensis L. monoculture. Soil microbial functional diversity in Solidago canadensis L. monoculture was distinctly separated from the native area and the ecotones. Aerobic bacteria, fungi and actinomycetes population significantly increased but anaerobic bacteria decreased in the soil with Solidago canadensis L. monoculture. The ratio of cyl9:0 to 18:1 co7 gradually declined but mono/sat and fung/bact PLFAs increased when Solidago canadensis L. became more dominant. The microbial community composition clearly separated the native soil from the invaded soils by PCA analysis, especially 18: lco7c, 16: lco7t, 16: lco5c and 18:2co6, 9 were present in higher concentrations for exotic soil. In conclusion, Solidago canadensis L. invasion could create better soil conditions by improving soil microbial community structure and functional diversity, which in turn was more conducive to the growth ofSolidago canadensis L.展开更多
The relationship between Solidago canadensis L. invasion and soil microbial communities was studied across the invasive gradients varying from 0 to 40, 80, and 100% coverage of S. canadensis. The results showed both s...The relationship between Solidago canadensis L. invasion and soil microbial communities was studied across the invasive gradients varying from 0 to 40, 80, and 100% coverage of S. canadensis. The results showed both soil microbial biomass C (Cmic) and N (Nmic) increased as the coverage of S. canadensis increased. Soil microbial quotient Cmic/Corg (microbial biomass C/organic C) tended to increase linearly with the coverage of S. canadensis. Soil basal respiration (BR) also showed a similar trend. The soil respiratory quotient qCO2 decreased with S. canadensis invasion, and remained at quite a constantly low level in the invasive soils. Sole carbon source utilization profiles analyses indicated that S. canadensis invasion tended to result in higher microbial functional diversity in the soil. Average utilization of specific substrate guilds was highest in the soil with S. canadensis monoculture. Principle component analysis of sole carbon source utilization profiles further indicated that microbial functional diversity in the soil with S. canadensis monoculture was distinctly separated from those soils in the native area and the ecotones. In conclusion, S. canadensis invasion improved soil microbial biomass, respiration and utilization of carbon sources, and decreased qCO2, thus created better soil conditions, which in turn were more conducive to the growth of S. canadensis.展开更多
基金Project(2009QNA6015) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(Y3110055)supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(Y200803219) supported by the Foundation of Zhejiang Educational Committee of China
文摘The relationship between Solidago canadensis L. invasion and soil microbial community diversity including functional and structure diversities was studied across the invasive gradients varying from 0 to 40%, 80%, and 100% coverage of Solidago canadensis L. using sole carbon source utilization profiles analyses, principle component analysis (PCA) and phospholipid fatty acids (PLFA) profiles analyses. The results show the characteristics of soil microbial community functional and structure diversity in invaded soils strongly changed by Solidago canadensis L. invasion. Solidago canadensis L. invasion tended to result in higher substrate richness, and functional diversity. As compared to the native and ecotones, average utilization of specific substrate guilds of soil microbe was the highest in Solidago canadensis L. monoculture. Soil microbial functional diversity in Solidago canadensis L. monoculture was distinctly separated from the native area and the ecotones. Aerobic bacteria, fungi and actinomycetes population significantly increased but anaerobic bacteria decreased in the soil with Solidago canadensis L. monoculture. The ratio of cyl9:0 to 18:1 co7 gradually declined but mono/sat and fung/bact PLFAs increased when Solidago canadensis L. became more dominant. The microbial community composition clearly separated the native soil from the invaded soils by PCA analysis, especially 18: lco7c, 16: lco7t, 16: lco5c and 18:2co6, 9 were present in higher concentrations for exotic soil. In conclusion, Solidago canadensis L. invasion could create better soil conditions by improving soil microbial community structure and functional diversity, which in turn was more conducive to the growth ofSolidago canadensis L.
基金supported by the Fundamental Research Funds for the Central Universities of China (2009QNA6015)Foundation of Zhejiang Educational Committee of China (Y200803219)
文摘The relationship between Solidago canadensis L. invasion and soil microbial communities was studied across the invasive gradients varying from 0 to 40, 80, and 100% coverage of S. canadensis. The results showed both soil microbial biomass C (Cmic) and N (Nmic) increased as the coverage of S. canadensis increased. Soil microbial quotient Cmic/Corg (microbial biomass C/organic C) tended to increase linearly with the coverage of S. canadensis. Soil basal respiration (BR) also showed a similar trend. The soil respiratory quotient qCO2 decreased with S. canadensis invasion, and remained at quite a constantly low level in the invasive soils. Sole carbon source utilization profiles analyses indicated that S. canadensis invasion tended to result in higher microbial functional diversity in the soil. Average utilization of specific substrate guilds was highest in the soil with S. canadensis monoculture. Principle component analysis of sole carbon source utilization profiles further indicated that microbial functional diversity in the soil with S. canadensis monoculture was distinctly separated from those soils in the native area and the ecotones. In conclusion, S. canadensis invasion improved soil microbial biomass, respiration and utilization of carbon sources, and decreased qCO2, thus created better soil conditions, which in turn were more conducive to the growth of S. canadensis.