期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Thermal rectification induced by Wenzel–Cassie wetting state transition on nano-structured solid–liquid interfaces
1
作者 李海洋 王军 夏国栋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期520-526,共7页
Thermal rectification refers to the phenomenon by which the magnitude of the heat flux in one direction is much larger than that in the opposite direction.In this study,we propose to implement the thermal rectificatio... Thermal rectification refers to the phenomenon by which the magnitude of the heat flux in one direction is much larger than that in the opposite direction.In this study,we propose to implement the thermal rectification phenomenon in an asymmetric solid–liquid–solid sandwiched system with a nano-structured interface.By using the non-equilibrium molecular dynamics simulations,the thermal transport through the solid–liquid–solid system is examined,and the thermal rectification phenomenon can be observed.It is revealed that the thermal rectification effect can be attributed to the significant difference in the interfacial thermal resistance between Cassie and Wenzel states when reversing the temperature bias.In addition,effects of the liquid density,solid–liquid bonding strength and nanostructure size on the thermal rectification are examined.The findings may provide a new way for designs of certain thermal devices. 展开更多
关键词 thermal rectification wetting transition interfacial thermal resistance solidliquid interfaces
下载PDF
Understanding fundamentals of electrochemical reactions with tender X-rays:A new lab-based operando X-ray photoelectron spectroscopy method for probing liquid/solid and gas/solid interfaces across a variety of electrochemical systems 被引量:1
2
作者 Chiyan Liu Qiao Dong +5 位作者 Yong Han Yijing Zang Hui Zhang Xiaoming Xie Yi Yu Zhi Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第11期2858-2870,共13页
Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrol... Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions. 展开更多
关键词 Tender X-rays Ambient pressure X-ray photoelectron spectroscopy ELECTROCATALYSIS liquid/solid interface Gas/solid interface
下载PDF
Fractal Description of the Solid/Liquid Interface of a Directionally Solidified Superalloy with Different Phosphorus Content
3
作者 Liling SUN Lianke DONG Jinghua ZHANG Zhuangqi HU Institute of Metal Research,Academia Sinica,Shenyang,110015,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第6期441-444,共4页
The solid/liquid interface of a directionally solidified Ni-base superalloy with different phosphorus contents was quantitatively described by means of fractat method.When the solidification rate was fixed,the relatio... The solid/liquid interface of a directionally solidified Ni-base superalloy with different phosphorus contents was quantitatively described by means of fractat method.When the solidification rate was fixed,the relationship between the fractal dimensionality of the solid/liquid interface and the phos- phorus content of the test alloy was given.Combined the thermodynamics and fractal theory,the ef- fect mechanism of phosphorus content on fractal dimensionality of the solid/liquid interface was discussed. 展开更多
关键词 fractal description solid/liquid interface PHOSPHORUS SUPERALLOY
下载PDF
Atomic-level characterization of liquid/solid interface
4
作者 Jiani Hong Ying Jiang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期25-36,共12页
The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspecti... The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspective,we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope(EC-STM),non-contact atomic force microscopy(NC-AFM),and surface-sensitive vibrational spectroscopies.Different from the ultrahigh vacuum and cryogenic experiments,these techniques are all operated in situ under ambient condition,making the measurements close to the native state of the liquid/solid interface.In the end,we present some perspectives on emerging techniques,which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces. 展开更多
关键词 liquid/solid interface atomic scale scanning tunneling microscope(STM) atomic force microscopy(AFM)
下载PDF
Role of temperature gradient in liquid/solid phase solution-diffusion bonding
5
作者 翟秋亚 徐锦锋 《China Welding》 EI CAS 2004年第2期86-90,共5页
The liquid-film solution-diffusion bonding of ZCuBe2.5 alloys was conducted using Cu-based alloy powders. The tensile strength of the joint is up to 318 MPa. With the increase of temperature gradient, the bonding time... The liquid-film solution-diffusion bonding of ZCuBe2.5 alloys was conducted using Cu-based alloy powders. The tensile strength of the joint is up to 318 MPa. With the increase of temperature gradient, the bonding time decreases and the interface migration velocity increases remarkably. The appropriate temperature gradient is 5-40 K/cm. Under fixed bonding time, the thickness of diffusion layer increases with the increase of temperature gradient, and this tendency becomes more remarkable with the prolonging of bonding time. 展开更多
关键词 solution-diffusion welding temperature gradient liquid/solid interface bonding time
下载PDF
FRACTAL ANALYSES OF DIRECTIONAL SOLIDIFICATION BEHAVIOR OF A Ni-BASE SUPERALLOY 被引量:2
6
作者 SUN Liling DONG Lianke ZHANG Jishan TANG Yajun ZHANG Jinghua HU Zhuangqi Institute of Metal Research,Academia Sinica,Shenyang,China SUN Liling,Institute of Metal Research,Academia Sinica,Shenyang 110015,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1993年第5期291-295,共5页
The morphology of solid/liquid interface of a directionally solidification process is described by means of fractal analysis,and the relations among the fractal dimension of the solid/liq- uid interface,solidification... The morphology of solid/liquid interface of a directionally solidification process is described by means of fractal analysis,and the relations among the fractal dimension of the solid/liq- uid interface,solidification rate,dendrite arm space and the phosphorus content of the test al- loys have been given.It was found that the increase of the solidification rate and the phos- phorus content of the test alloy will lead to a increase,following the regularity of exponential function,in the fractal dimension of solid/liquid interface.Furthermore,by combining the fractal theory and the thermodynamic principle with the measured results,it has been proved that the fractal dimension is not only a kind of simple geometrical parameter used in des- cribing irregular geometry,but also a state function depending the change of solidification parameters and chemical compositions. 展开更多
关键词 fractal dimension solid/liquid interface solidification rate PHOSPHORUS SUPERALLOY
下载PDF
Recent Progress in Metallurgical Bonding Mechanisms at the Liquid/Solid Interface of Dissimilar Metals Investigated via in situ X-ray Imaging Technologies 被引量:6
7
作者 Zongye Ding Naifang Zhang +3 位作者 Liao Yu Wenquan Lu Jianguo Li Qiaodan Hu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第2期145-168,共24页
The liquid/solid(L/S)interface of dissimilar metals is critical to the microstructure,mechanical strength,and structural integrity of interconnects in many important applications such as electronics,automotive,aeronau... The liquid/solid(L/S)interface of dissimilar metals is critical to the microstructure,mechanical strength,and structural integrity of interconnects in many important applications such as electronics,automotive,aeronautics,and astronautics,and therefore has drawn increasing research interests.To design preferential microstructure and optimize mechanical properties of the interconnects,it is crucial to understand the formation and growth mechanisms of diversified structures at the L/S interface during interconnecting.In situ synchrotron radiation or tube-generated X-ray radiography and tomography technologies make it possible to observe the evolution of the L/S interface directly and therefore have greatly propelled the research in this field.Here,we review the recent progress in understanding the L/S interface behaviors using advanced in situ X-ray imaging techniques with a particular focus on the following two issues:(1)interface behaviors in the solder joints for microelectronic packaging including the intermetallic compounds(IMCs)during refl ow,Sn dendrites,and IMCs during solidification and refl ow porosities and(2)growth characteristics and morphological transition of IMCs in the interconnect of dissimilar metals at high temperature.Furthermore,the main achievements and future research perspectives in terms of metallurgical bonding mechanisms under complex conditions with improved X-ray sources and detectors are remarked and discussed. 展开更多
关键词 liquid/solid interface Metallurgical bonding Dissimilar interconnects In situ X-ray imaging solidIFICATION Microelectronic packaging
原文传递
Simulation of the Influence of Pulsed Magnetic Field on the Superalloy Melt with the Solid-Liquid Interface in Directional Solidification 被引量:3
8
作者 Kuiliang Zhang Yingju Li Yuansheng Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第10期1442-1454,共13页
The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification.In the presence of the solid-liquid interface condition,the distributions of the elect... The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification.In the presence of the solid-liquid interface condition,the distributions of the electromagnetic force,flow field,temperature field,and Joule heat in front of the solid-liquid interface in directional solidification with the pulsed magnetic field are simulated.The calculation results show that the largest electromagnetic force in the melt appears near the solid-liquid interface,and the electromagnetic force is distributed in a gradient.There are intensive electromagnetic vibrations in front of the solid-liquid interface.The forced melt convection is mainly concentrated in front of the solid-liquid interface,accompanied by a larger flow velocity.The simulation results indicate that the grain refinement is attributed to that the electromagnetic vibration and forced convection increase the nucleation rate and the probability of dendrite fragments survival,for making dendrite easily fragmented,homogenizing the melt temperature,and increasing the undercooling in front of the solid-liquid interface. 展开更多
关键词 Pulsed magnetic field solidliquid interface SIMULATION Electromagnetic force Melt convection Superalloy
原文传递
Water–solid contact electrification and catalysis adjusted by surface functional groups
9
作者 Yusen Su Andy Berbille +1 位作者 Zhong Lin Wang Wei Tang 《Nano Research》 SCIE EI CSCD 2024年第4期3344-3351,共8页
Chemical functional groups on solid surfaces greatly influence contact electrification(CE)at water–solid interfaces.Previous studies of their effects mainly swapped materials or bonded related molecules to a substrat... Chemical functional groups on solid surfaces greatly influence contact electrification(CE)at water–solid interfaces.Previous studies of their effects mainly swapped materials or bonded related molecules to a substrate,introducing other factors of influence.This work aims at unambiguously demonstrating the role of functional groups in water-polymer CE.We study the contribution of functional groups,by using ion coupled plasma etching to modify a high-density polyethylene(HDPE)film,a polymer with a naturally quasi-null charge transfer ability.Fluoride(HDPE–F)and hydroxyl(HDPE–OH)functional groups are generated and endowed HDPE with charge withdrawing ability.HDPE–F withdraws 2.5–2.7 times more charges than HDPE–OH.Concurrently,the surface charges accumulated generate electrostatic forces,altering the droplets motion.This phenomenon provides another approach to study CE,helping to evaluate the contribution of electrons to solid–liquid CE.Finally,employing HDPE–F to perform contact-electro-catalysis shows its activity is 2.4 times higher than that of commercial fluorinated films. 展开更多
关键词 contact-electro-catalysis charge transfer solidliquid interfaces contact electrification
原文传递
Influence of coarse tailings on flocculation settlement 被引量:11
10
作者 Shi Wang Xue-peng Song +3 位作者 Xiao-jun Wang Qiu-song Chen Jian-chun Qin Yu-xian Ke 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第8期1065-1074,共10页
The composition of tailings particles in mines plays a key role in the flocculation settlement of slurries.To study the influence of coarse particle tailings(CPTs)on the flocculation settlement of tailings slurries(TS... The composition of tailings particles in mines plays a key role in the flocculation settlement of slurries.To study the influence of coarse particle tailings(CPTs)on the flocculation settlement of tailings slurries(TSs),static flocculent settling tests,scanning electron microscopy observations,and laser particle size analyses were conducted using the tailings obtained from a copper mine.The results demonstrate that(i)in the accelerated and free settling process,CPTs did not directly settle at the bottom of graduated cylinders;instead,they were netted by the flocculent structures(FSs)and settled together more quickly.The CPTs accelerate the rapid settlement of TSs;the acceleration effect is more obvious when the CPTs content is greater than 50 wt%.(ii)The most appropriate flocculant unit consumption(FUC)is 20 g·t-1,and no substantial increase is observed in the flocculant settling velocity with an increase in the flocculant because the effective FSs did not substantially change and thus did not lead to a notable increase in the settling velocity of the solid–liquid interface(SLI).(iii)In the effective settling space of the thickening facility,free water quickly flowed from the pores of FSs,which is reflected in the period from 0 to 1 min. 展开更多
关键词 tailings slurry particle size distribution flocculent structures flocculating sedimentation solidliquid interface
下载PDF
Mineral Surface after Reaction with Aqueous Solution at High Temperatures and Pressures 被引量:1
11
作者 ZHANG Xuetong ZHANG Ronghua +1 位作者 HU Shumin YU Wenbin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期406-411,共6页
This work presents new experimental results on surface chemistry of reacting minerals and interface kinetics between mineral and aqueous solutions. These experiments were carried out using a flow reactor (packed bed r... This work presents new experimental results on surface chemistry of reacting minerals and interface kinetics between mineral and aqueous solutions. These experiments were carried out using a flow reactor (packed bed reactor) of an open system as well as a continuous stirred tank reactor, CSTR. The authors measured reaction rates of such minerals as zeolite, albite and carbonate (rhodochrosite, dolomite) in various solutions, and tested corresponding mineral surface by using SEM, XPS, SIMS, etc. This paper mainly presents the experimental results of zeolite dissolution in water and in low pH solutions at room temperature, and dolomite dissolution at elevated temperatures. The results show that the release rates of Si, Al and Na of zeolite are different in most cases. The incongruent dissolution of zeolite is related to surface chemical modifications. The Na, Al and Si release rates for dissolution of albite and zeolite in water and various solutions were measured as a function of temperature, flow velocity, pH and solution composition in the reaction system. In most cases, dissolutions of both albite and zeolite are incongruent. Dissolution of dolomite is also incongruent in most cases and varied with T, pH, and nature of aqueous solutions. For dolomite dissolution, the release rates of Mg are less than those of Ca at high temperatures as T increases from 25 to 300°C. SIMS study indicates that the contents of Al, Na and Si in the leached layer of zeolite or albite surface, change with the distance from the surface, exhibiting a non-linear behaviour within a thickness range of 1000%. The distributions of Ca, Mg, Mn, H and Cl in the leached surface layer of carbonate have a non-linear behaviour too. 展开更多
关键词 mineral surface KINETICS liquid/solid interface REACTION
下载PDF
Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient
12
作者 Peng Peng Jinmian Yue +2 位作者 Anqiao Zhang Xudong Zhang Yuanli Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第12期169-176,共8页
Compared with the growing applications of peritectic alloys,none research on the fluid permeability K of dendritic network during peritectic solidification has been reported before.The fluid permeability K of dendriti... Compared with the growing applications of peritectic alloys,none research on the fluid permeability K of dendritic network during peritectic solidification has been reported before.The fluid permeability K of dendritic network in the mushy zone during directional solidification of Sn-Ni peritectic alloy was investigated in this study.Examination on the experimental results demonstrates that both the temperature gradient zone melting(TGZM)and Gibbs-Thomson(G–T)effects have obvious influences on the morphology of dendritic network during directional solidification.This is realized through different stages of liquid diffusion within dendritic mushy zone by these effects during directional solidification.The TGZM effect is demonstrated to play a more important role as compared with the G–T effect during directional solidification.Besides,it is shown that the evolution of dendrite network is more complex during peritectic solidification due to the involvement of the peritectic phase.Through the specific surface SV,analytical expression based on the Carman–Kozeny model was proposed to analyze the fluid permeability of dendritic mushy zone in directionally solidified peritectic alloys.In addition,it is interesting to find a rise in permeability K after peritectic reaction in both theoretical predication and experimental results,which is different from that in other alloys.The theoretical predictions show that this rise in fluid permeability K after peritectic reaction is caused by the remelting/resolidification process on dendritic structure by the TGZM and G–T effects during peritectic solidification. 展开更多
关键词 ALLOYS Diffusion behaviour Directional solidification Peritecticm icrostructures solid/liquid interface
原文传递
Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates
13
作者 Chunjuan Cui Cong Wang +4 位作者 Pei Wang Wei Liu Yuanyuan Lai Li Deng Haijun Su 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第7期63-74,共12页
Fe-Al-Ta eutectic composites were obtained by a modified Bridgman directional solidification technique at different solidification rates.Solidification microstructure transforms from regular eutectic to eutectic colon... Fe-Al-Ta eutectic composites were obtained by a modified Bridgman directional solidification technique at different solidification rates.Solidification microstructure transforms from regular eutectic to eutectic colony with the increase of the solidification rate.The solid/liquid interface of Fe-Al-Ta eutectic evolves from planar interface to cellular interface with the increase of the solidification rate.In addition,threepoint bending method was adopted to study the room-temperature fracture toughness of the as-cast Fe-Al-Ta eutectic alloy and the Fe-Al-Ta eutectic composites.Moreover,the fracture morphologies,the crack propagation path and the strengthening mechanism of Fe-Al-Ta eutectic were discussed. 展开更多
关键词 Directional solidification Eutectic composite solid/liquid interface Fracture toughness Fracture morphology
原文传递
In situ study on the oscillation of mobile droplets and force analysis during the directional solidification of Al-Bi alloy
14
作者 Ya Zhang Yue Wu +6 位作者 Yang Tang Jianbo Ma Bo Mao Yanling Xue Hui Xing Jiao Zhang Baode Sun 《Journal of Materials Science & Technology》 SCIE EI CAS 2024年第10期1-9,共9页
During solidifications of immiscible alloys,the motion of droplets at the solid/liquid(S/L)interface is gen-erally driven by dragging force,gravity force,repulsion force of interface,and thermal-solutal Marangoni forc... During solidifications of immiscible alloys,the motion of droplets at the solid/liquid(S/L)interface is gen-erally driven by dragging force,gravity force,repulsion force of interface,and thermal-solutal Marangoni force,However,there is few in situ study investigating kinetics behavior to analyze the forces on droplets.The mechanism of droplet motion remains unclear due to the unavailability or uncertainty of the effect of convection and solutal Marangoni force on droplet behavior.In this study,directional solidification of im-miscible Al-Bi alloy was observed via synchrotron radiography,and the horizontal oscillation of droplets at S/L interface was detected for the first time.Forces,especially solutal Marangoni force,were calcu-lated based on the in situ measured radius of droplets and thermal-solutal gradients.The experimental results cannot be reasonably explained by the previous analysis model which neglects melt convection.The non-negligible effect of flow on droplet motion was demonstrated,and the force balance of droplet both vertically and horizontally can be obtained considering a lift force of 6.39 × 10^(-9) N and a modified solute-related parameter dσ/dc of 0.45-0.65 J m^(-2),respectively. 展开更多
关键词 Radiography solidification Immiscible alloys Droplet behavior solid/liquid interface
原文传递
Numerical Simulation of Electromagnetic Field and Temperature Field in Medium-Frequency Induction Furnace Melting Process 被引量:2
15
作者 YANG Dong ZHOU Jian-xin +2 位作者 WANG Hong LIAO Dun-ming PANG Sheng-yong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第S2期783-786,共4页
A mathematical model for describing the melting process in the medium-frequency induction furnace was developed.Finite difference method was applied to deal with coupling electromagnetic field and temperature field in... A mathematical model for describing the melting process in the medium-frequency induction furnace was developed.Finite difference method was applied to deal with coupling electromagnetic field and temperature field in the melting process.The magnetic induction,temperature distribution and the phase interface moving characteristic during melting of the furnace burden were calculated.The effects of the direct current and inductive heating frequency on the process were analyzed.The simulation results show that:In the direction of burden radius,magnetic induction decreases from the outside of the burden to the center.Solid/liquid interface moves gradually from the outside of the burden to the center.The movement speed increases when the burden begins to melt.In the direction of the burden height,the distribution of eddy current in the surface is accord with the edge effect of the coil.Solid/liquid interface moves gradually from the center to the two sides.The direct current has a greater effect on the electromagnetic field and temperature field than frequency. 展开更多
关键词 medium-frequency induction furnace electromagnetic field temperature field magnetic induction solid/liquid interface numerical simulation
原文传递
Hybrid molecular nanostructures with donor-acceptor chains
16
作者 YANG Liu GUAN CuiZhong +8 位作者 YUE Wan WU JingYi YAN HuiJuan ZHANG Xu WANG ZhaoHui ZHAN XiaoWei LI YuLiang WANG Dong WAN LiJun 《Science China Chemistry》 SCIE EI CAS 2013年第1期124-130,共7页
We have fabricated hybrid molecular chain structures formed by electron acceptor compound 1 and electron donor molecules 2 and 3 at the liquid/solid interface of graphite surface.The structural details of the mono-com... We have fabricated hybrid molecular chain structures formed by electron acceptor compound 1 and electron donor molecules 2 and 3 at the liquid/solid interface of graphite surface.The structural details of the mono-component and the binary assemblies are revealed by high resolution scanning tunneling microscopy (STM).Compound 1 can form two well-ordered lamellar patterns at different concentrations.In the co-adsorption structures,compounds 2 and 3 can insert into the space between molecular chains of compound 1 and form large area well-ordered nanoscale phase separated lamellar structures.The unit cell parameters for the coassemblies can be "flexibly" adjusted to make the electron donors and acceptors perfectly match along the molecular chains.Scanning tunneling spectroscopy (STS) results indicate that the electronic properties of individual molecular donors and acceptors are preserved in the binary self-assembly.These results provide molecular insight into the nanoscale phase separation of organic electron acceptors and donors on surfaces and are helpful for the fabrication of surface supramolecular structures and molecular devices. 展开更多
关键词 phase separation donor and acceptor self-assembly hybrid molecular nanostructure liquid/solid interface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部