A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and...A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and demonstrated. This unique structure shows a high ionic conductivity, low interface resistance with electrode, and can suppress the growth of lithium dendrite. The features of forming the SEI in situ are investigated by scanning electron microscopy(SEM) and x-ray photoelectron spectroscopy(XPS). The results confirm that SEI films mainly consist of lithium fluoride and carbonates with various alkyl contents. The cell assembled by using the LAGP-coated separator demonstrates a good cycling performance even at high charging rates, and the lithium dendrites were not observed on the lithium metal electrode. Therefore, the SEI-LAGP-PP separator can be used as a promising flexible solid electrolyte for solid state lithium batteries.展开更多
Experiments on the solid-state reaction between iron ore particles and MgO were performed to investigate the coating mechanism of MgO on the iron ore particles' surface during fluidized bed reduction. MgO powders and...Experiments on the solid-state reaction between iron ore particles and MgO were performed to investigate the coating mechanism of MgO on the iron ore particles' surface during fluidized bed reduction. MgO powders and iron ore particles were mixed and compressed into briquettes and, subsequently, roasted at different temperatures and for different time periods. A Mg-containing layer was observed on the outer edge of the iron ore particles when the roasting temperature was greater than 1173 K. The concentration of Fe in the Mg-containing layer was evenly distributed and was approximately 10wt%, regardless of the temperature change. Boundary layers of Mg and Fe were observed outside of the iron ore particles. The change in concentration of Fe in the boundary layers was simulated using a gas–solid diffusion model, and the diffusion coefficients of Fe and Mg in these layers at different temperatures were calculated. The diffusion activation energies of Fe and Mg in the boundary layers in these experiments were evaluated to be approximately 176 and 172 k J/mol, respectively.展开更多
Carbon nanoparticle coatings on laser-patterned stainless-steel surfaces present a solid lubrication system where the pattern's recessions act as lubricant-retaining reservoirs.This study investigates the influenc...Carbon nanoparticle coatings on laser-patterned stainless-steel surfaces present a solid lubrication system where the pattern's recessions act as lubricant-retaining reservoirs.This study investigates the influence of the structural depth of line patterns coated with multi-walled carbon nanotubes(CNTs)and carbon onions(COs)on their respective potential to reduce friction and wear.Direct laser interference patterning(DLIP)with a pulse duration of 12 ps is used to create line patterns with three different structural depths at a periodicity of 3.5μm on AISI 304 steel platelets.Subsequently,electrophoretic deposition(EPD)is applied to form homogeneous carbon nanoparticle coatings on the patterned platelets.Tribological ball-on-disc experiments are conducted on the as-described surfaces with an alumina counter body at a load of 100 mN.The results show that the shallower the coated structure,the lower its coefficient of friction(COF),regardless of the particle type.Thereby,with a minimum of just below 0.20,CNTs reach lower COF values than COs over most of the testing period.The resulting wear tracks are characterized by scanning electron microscopy,transmission electron microscopy,and energy-dispersive X-ray spectroscopy.During friction testing,the CNTs remain in contact,and the immediate proximity,whereas the CO coating is largely removed.Regardless of structural depth,no oxidation occurs on CNT-coated surfaces,whereas minor oxidation is detected on CO-coated wear tracks.展开更多
The bonded MoS_(2)solid lubricant coating is an effective measure to mitigate the fretting wear of AISI 1045 steel.In this work,the amino functionalized MoS_(2)was protonated with acetic acid to make the MoS_(2)positi...The bonded MoS_(2)solid lubricant coating is an effective measure to mitigate the fretting wear of AISI 1045 steel.In this work,the amino functionalized MoS_(2)was protonated with acetic acid to make the MoS_(2)positively charged.The directional arrangement of protonated MoS2 in the coating was achieved by electrophoretic deposition under the electric field force.The bonded directionally aligned MoS_(2)solid lubricant coating showed high adaptability to various loads and excellent lubrication performance under all three working conditions.At a load of 10 N,the friction coefficient and wear volume of the coating with 5 wt%protonated MoS_(2)decreased by 20.0%and 37.2%compared to the pure epoxy coating,respectively,and by 0.07%and 16.8%than the randomly arranged MoS_(2)sample,respectively.The remarkable lubricating properties of MoS_(2)with directional alignment were attributed to its effective load-bearing and mechanical support,barrier effect on longitudinal extension of cracks,and the formation of a continuous and uniform transfer film.展开更多
High-temperature solid lubricants play a significant role in the hot metal forming process.However,preparing high-temperature solid lubricant is formidably challenging due to the stern working conditions.Here we succe...High-temperature solid lubricants play a significant role in the hot metal forming process.However,preparing high-temperature solid lubricant is formidably challenging due to the stern working conditions.Here we successfully develop a new type of eco-friendly high-temperature graphite-based solid lubricant by using amorphous silica dioxide,aluminum dihydrogen phosphate,and solid lubricant graphite.The solid lubricating coating exhibits excellent tribological properties with a very low friction coefficient and good wear protection for workpiece at high temperature under the air atmosphere.An array of analytical techniques reveals the existence of solid lubricant graphite in the lubricating coating after the high-temperature friction test.A synergistic effect between the protective surface film and the solid lubricant graphite is proposed to account for such superior lubricating performance.This work highlights the synergistic effect between the protection layer and the lubricant graphite and further provides the insight in designing the high-temperature solid lubricant.展开更多
Transition metal di-chalcogenides MX2 (X= S, Se, Te; and M = W, Mo, Nb, Ta) are one kind of solid lubricant materials that have been widely used in industry. The lubricant properties of such lubricant coatings are d...Transition metal di-chalcogenides MX2 (X= S, Se, Te; and M = W, Mo, Nb, Ta) are one kind of solid lubricant materials that have been widely used in industry. The lubricant properties of such lubricant coatings are dependent not only on microstructure, orientation, morphology, and composition of the coatings, but also on the substrate, the interface between substrate and lubricant coatings, and the specific application environment. In this review, the effects of parameters on tribological properties of such kind of lubricant coatings were summarized. By comparing advantages and disadvantages of those coatings, the special treatments such as doping, structural modulation and post-treatment were suggested, aiming to improve the tribologicai performance under severe test conditions (e.g. high temperature, oxidizing atmosphere or humid condition).展开更多
Derived from dry powder coating of metals, electrostatic powder coating for pharmaceuticals is a technology for coating drug solid dosage forms. In this technology, coating powders, containing coating polymers, pigmen...Derived from dry powder coating of metals, electrostatic powder coating for pharmaceuticals is a technology for coating drug solid dosage forms. In this technology, coating powders, containing coating polymers, pigments, and other excipients, are directly sprayed onto the surface of the solid dosage forms through an electrostatic gun without using any organic solvent or water. The deposited coating powders are further cured to form a coating film. Electrostatic powder coating technology has many advantages compared to other pharmaceutical coating methods. It can eliminate the limitations caused by the organic solvent in solvent coating such as environmental issues and health problems. And electrostatic powder coating technology also surpasses aqueous coating due to its shorter processing time and less energy consumption, leading to a lower overall cost. Furthermore, the utilization of electrical attraction can promote the movement of coating powders towards the substrate, leading to an enhanced coating powder adhesion and coating efficiency, which make it more promising compared to other dry coating technologies. The objective of this review is to summarize the coating principles, apparatus, and formulations of different electrostatic powder coating technologies, giving their advantages and limitations and also analyzing the future application in the industry for each technology展开更多
Zr/ZrH2 particles with irregular morphologies and broad size distribution were uniformly coated with acicular α-FeOOH crystal grains via a facile route without using polymers or surfactants. The as-synthesized materi...Zr/ZrH2 particles with irregular morphologies and broad size distribution were uniformly coated with acicular α-FeOOH crystal grains via a facile route without using polymers or surfactants. The as-synthesized material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), UV-vis diffusion reflection (UV-vis) and Raman spectrometry. Based on these characterizations, the synthesis mechanism was explained in terms of combined heterogeneous nucleation and solid state transformation reaction. The presence of α-FeOOH coating greatly changed the combustion behavior of Zr/ZrH2 particles: the combustion lasting time decreased from 32 s for un-coated Zr/ZrH2 particles to 0.2 s for coated particles while the maximum temperature in the combustion process increased from 1510 ℃ to 2036℃.展开更多
基金Project supported by the Beijing Science and Technology ProjectChina(Grant No.Z13111000340000)+1 种基金the National Basic Research Program of China(Grant No.2012CB932900)the National Natural Science Foundation of China(Grant Nos.51325206 and 51421002)
文摘A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and demonstrated. This unique structure shows a high ionic conductivity, low interface resistance with electrode, and can suppress the growth of lithium dendrite. The features of forming the SEI in situ are investigated by scanning electron microscopy(SEM) and x-ray photoelectron spectroscopy(XPS). The results confirm that SEI films mainly consist of lithium fluoride and carbonates with various alkyl contents. The cell assembled by using the LAGP-coated separator demonstrates a good cycling performance even at high charging rates, and the lithium dendrites were not observed on the lithium metal electrode. Therefore, the SEI-LAGP-PP separator can be used as a promising flexible solid electrolyte for solid state lithium batteries.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-TP-15-009A2)the Project Funded by China Postdoctoral Science Foundation (2015M570931)+1 种基金the National Natural Science Fund Project of China (91534121)the National Major Scientific Instruments Special Plan (2011YQ12003907)
文摘Experiments on the solid-state reaction between iron ore particles and MgO were performed to investigate the coating mechanism of MgO on the iron ore particles' surface during fluidized bed reduction. MgO powders and iron ore particles were mixed and compressed into briquettes and, subsequently, roasted at different temperatures and for different time periods. A Mg-containing layer was observed on the outer edge of the iron ore particles when the roasting temperature was greater than 1173 K. The concentration of Fe in the Mg-containing layer was evenly distributed and was approximately 10wt%, regardless of the temperature change. Boundary layers of Mg and Fe were observed outside of the iron ore particles. The change in concentration of Fe in the boundary layers was simulated using a gas–solid diffusion model, and the diffusion coefficients of Fe and Mg in these layers at different temperatures were calculated. The diffusion activation energies of Fe and Mg in the boundary layers in these experiments were evaluated to be approximately 176 and 172 k J/mol, respectively.
基金financial support by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)within the project MU 959/47-1Furthermore,the authors gratefully acknowledge funding in the ZuMat projectsupported by the State of Saarland from the European Regional Development Fund(Europäischer Fonds für Regionale Entwicklung,EFRE).P.Grützmacher and C.Gachot would like to thank the Government of Lower Austria(WST3)for financially supporting the endowed professorship tribology at the TU Wien.V.Presser thanks Eduard Arzt(INM)for his continuing support.
文摘Carbon nanoparticle coatings on laser-patterned stainless-steel surfaces present a solid lubrication system where the pattern's recessions act as lubricant-retaining reservoirs.This study investigates the influence of the structural depth of line patterns coated with multi-walled carbon nanotubes(CNTs)and carbon onions(COs)on their respective potential to reduce friction and wear.Direct laser interference patterning(DLIP)with a pulse duration of 12 ps is used to create line patterns with three different structural depths at a periodicity of 3.5μm on AISI 304 steel platelets.Subsequently,electrophoretic deposition(EPD)is applied to form homogeneous carbon nanoparticle coatings on the patterned platelets.Tribological ball-on-disc experiments are conducted on the as-described surfaces with an alumina counter body at a load of 100 mN.The results show that the shallower the coated structure,the lower its coefficient of friction(COF),regardless of the particle type.Thereby,with a minimum of just below 0.20,CNTs reach lower COF values than COs over most of the testing period.The resulting wear tracks are characterized by scanning electron microscopy,transmission electron microscopy,and energy-dispersive X-ray spectroscopy.During friction testing,the CNTs remain in contact,and the immediate proximity,whereas the CO coating is largely removed.Regardless of structural depth,no oxidation occurs on CNT-coated surfaces,whereas minor oxidation is detected on CO-coated wear tracks.
基金the financial support of National Natural Science Foundation of China(Nos.52075458 and U2141211)Sichuan Science Foundation for Distinguished Young Scholars(No.2023NSFSC1957)the Analytical and Testing Center of Southwest Jiaotong University for support of the scanning electron microscopy(SEM)and Raman measurements.
文摘The bonded MoS_(2)solid lubricant coating is an effective measure to mitigate the fretting wear of AISI 1045 steel.In this work,the amino functionalized MoS_(2)was protonated with acetic acid to make the MoS_(2)positively charged.The directional arrangement of protonated MoS2 in the coating was achieved by electrophoretic deposition under the electric field force.The bonded directionally aligned MoS_(2)solid lubricant coating showed high adaptability to various loads and excellent lubrication performance under all three working conditions.At a load of 10 N,the friction coefficient and wear volume of the coating with 5 wt%protonated MoS_(2)decreased by 20.0%and 37.2%compared to the pure epoxy coating,respectively,and by 0.07%and 16.8%than the randomly arranged MoS_(2)sample,respectively.The remarkable lubricating properties of MoS_(2)with directional alignment were attributed to its effective load-bearing and mechanical support,barrier effect on longitudinal extension of cracks,and the formation of a continuous and uniform transfer film.
基金The work is financially supported by the National Key Research and Development Program(No.2018 YFB2002204)the National Natural Science Foundation of China(Grant Nos.51925506 and 51527901).
文摘High-temperature solid lubricants play a significant role in the hot metal forming process.However,preparing high-temperature solid lubricant is formidably challenging due to the stern working conditions.Here we successfully develop a new type of eco-friendly high-temperature graphite-based solid lubricant by using amorphous silica dioxide,aluminum dihydrogen phosphate,and solid lubricant graphite.The solid lubricating coating exhibits excellent tribological properties with a very low friction coefficient and good wear protection for workpiece at high temperature under the air atmosphere.An array of analytical techniques reveals the existence of solid lubricant graphite in the lubricating coating after the high-temperature friction test.A synergistic effect between the protective surface film and the solid lubricant graphite is proposed to account for such superior lubricating performance.This work highlights the synergistic effect between the protection layer and the lubricant graphite and further provides the insight in designing the high-temperature solid lubricant.
文摘Transition metal di-chalcogenides MX2 (X= S, Se, Te; and M = W, Mo, Nb, Ta) are one kind of solid lubricant materials that have been widely used in industry. The lubricant properties of such lubricant coatings are dependent not only on microstructure, orientation, morphology, and composition of the coatings, but also on the substrate, the interface between substrate and lubricant coatings, and the specific application environment. In this review, the effects of parameters on tribological properties of such kind of lubricant coatings were summarized. By comparing advantages and disadvantages of those coatings, the special treatments such as doping, structural modulation and post-treatment were suggested, aiming to improve the tribologicai performance under severe test conditions (e.g. high temperature, oxidizing atmosphere or humid condition).
文摘Derived from dry powder coating of metals, electrostatic powder coating for pharmaceuticals is a technology for coating drug solid dosage forms. In this technology, coating powders, containing coating polymers, pigments, and other excipients, are directly sprayed onto the surface of the solid dosage forms through an electrostatic gun without using any organic solvent or water. The deposited coating powders are further cured to form a coating film. Electrostatic powder coating technology has many advantages compared to other pharmaceutical coating methods. It can eliminate the limitations caused by the organic solvent in solvent coating such as environmental issues and health problems. And electrostatic powder coating technology also surpasses aqueous coating due to its shorter processing time and less energy consumption, leading to a lower overall cost. Furthermore, the utilization of electrical attraction can promote the movement of coating powders towards the substrate, leading to an enhanced coating powder adhesion and coating efficiency, which make it more promising compared to other dry coating technologies. The objective of this review is to summarize the coating principles, apparatus, and formulations of different electrostatic powder coating technologies, giving their advantages and limitations and also analyzing the future application in the industry for each technology
基金support from the National Natural Science Foun-dation (No. 20573128)National Basic Research Program of China(No. 2005CB221402)Shanxi Natural Science Foundation (Nos.20051025, 2006021031 and 2007021014)
文摘Zr/ZrH2 particles with irregular morphologies and broad size distribution were uniformly coated with acicular α-FeOOH crystal grains via a facile route without using polymers or surfactants. The as-synthesized material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), UV-vis diffusion reflection (UV-vis) and Raman spectrometry. Based on these characterizations, the synthesis mechanism was explained in terms of combined heterogeneous nucleation and solid state transformation reaction. The presence of α-FeOOH coating greatly changed the combustion behavior of Zr/ZrH2 particles: the combustion lasting time decreased from 32 s for un-coated Zr/ZrH2 particles to 0.2 s for coated particles while the maximum temperature in the combustion process increased from 1510 ℃ to 2036℃.