Solid adsorption system, one of alternative refrigeration systems, is utilized to provide cold for refrigerator or air-conditioner and can be operated by assistance of solar heat. System performance study through comp...Solid adsorption system, one of alternative refrigeration systems, is utilized to provide cold for refrigerator or air-conditioner and can be operated by assistance of solar heat. System performance study through computer usage to develop simulation program and simulate behaviors of system operation can give designed system which suits for user’s need. Also, the present study aims to develop dynamic simulation program of solid adsorption refrigeration system operated by solar assistance to simulate behaviors of system operation and its performance. Flat plate collectror is utilized to provide thermal energy for system’s adsorber and activated carbon/methanol is used to be a suitable working pair. Simulation procedure starts with various solar radiation intensities as input energy on solar collector and water is used as collector working fluid. Behavior of system operation can be considered to be 4 steps as isosteric heating, isobaric desorption, isosteric cooling and isobaric adsorption, respectively. This research studies the effect of varying solar radiation intensity on temperature, pressure of adsorber, adsorption ratio at each steps of system operated ranging from 6:00 am (the first day) to 6:00 am (the next day) and system performance which is defined as coefficient of performance, COP. In addition, the simulation result shows monthly average COP of 0.43 compared to a result of another previous research work under the same operating condition and the percentage error is 7.5%.展开更多
A new solar coupling regeneration system is proposed in order to improve the reliability of solar desiccant regeneration system.The new system makes comprehensively use of the solar energy and can also be appropriate ...A new solar coupling regeneration system is proposed in order to improve the reliability of solar desiccant regeneration system.The new system makes comprehensively use of the solar energy and can also be appropriate for energy-storage in a night operation mode when the electric power supply is at its valley.Comparison of the performance of the new system,the solar thermal regeneration system and the solar electrodialysis regeneration system are made and the influential factors of the performance of the new system are investigated.The results reveal that the new system will be more energy efficient than the solar thermal regeneration system and the solar electrodialysis regeneration system.展开更多
Experimental results of an intermittent solar absorption cooling system using parabolic collector are presented in this paper. The system used 6 kg of ammonia as refrigerant, 6 kg of calcium chloride as absorbent and ...Experimental results of an intermittent solar absorption cooling system using parabolic collector are presented in this paper. The system used 6 kg of ammonia as refrigerant, 6 kg of calcium chloride as absorbent and 2 kg activated carbon as a solvent. The generator temperature was found to be 105°C. The system could produce ice at –16°C on the average. These are the most advanced results for a solar ice maker so far. All these successful achievements will speed up the commercial processing of a solar ice maker.展开更多
In the present work, an investigation on the application of solar energy to heat a sandy bed impregnated with calcium chloride for recovery of water from atmospheric air is presented. The study also aimed at evaluatin...In the present work, an investigation on the application of solar energy to heat a sandy bed impregnated with calcium chloride for recovery of water from atmospheric air is presented. The study also aimed at evaluating the effects of different parameters on the productivity of the system during regeneration. These parameters include system design characteristics and the climatic conditions. An experimental unit has been designed and installed for this purpose in climatic conditions of Taif area, Saudi Arabia. The experimental unit which has a surface area of 0.5 m2, comprises a solar/desiccant collector unit containing sandy bed impregnated with calcium chloride. The sandy layer impregnated with desiccant is subjected to ambient atmosphere to absorb water vapor in the night. During the sunshine period, the layer is covered with glass layer where desiccant is regenerated and water vapor is condensed on the glass surface. Ambient temperature, bed temperature and temperature of glass surface are recorded. Also, the productivity of the system has been evaluated. Desiccant concentration at start of regeneration is selected on the basis of the climatic data of Al-Hada region, which is located at Taif area, Saudi Arabia. Experimental measurements show that about 1.0 liter per m2 of pure water can be regenerated from the desiccant bed at the climatic conditions of Taif. Liquid desiccant with initial concentration of 30% can be regenerated to a final concentration of about 44%. Desiccant concentration at start of regeneration is selected on the basis of the climatic data of Al-Hada region. The climate of Taif city is dry compared with that for Al-Hada region. This method for extracting water from atmospheric air is more suitable for Al-Hada region especially in the fall and winter.展开更多
Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power sy...Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power system using the reversible solid oxide fuel cell assisted by solar energy to produce solar fuel and then supply energy products for users during the period without solar radiation.The system runs a solar-assisted solid oxide electrolysis cell mode and a solid oxide fuel cell mode.The thermodynamic models are constructed,and the energetic and exergetic performances are analyzed.Under the design work conditions,the SOEC mode’s overall system energy and exergy efficiencies are 19.0%and 20.5%,respectively.The electrical,energy and exergy efficiencies in the SOFC mode are 51.4%,71.3%,and 45.2%,respectively.The solid oxide fuel cell accounts for 60.0%of total exergy destruction,caused by the electrochemical reactions’thermodynamic irreversibilities.The increase of operating temperature of solid oxide fuel cell from 800℃to 1050℃rises the exergy and energy efficiencies by 11.3%and 12.3%,respectively.Its pressure from 0.2 to 0.7 MPa improves electrical efficiency by 13.8%while decreasing energy and exergy efficiencies by 5.2%and 6.0%,respectively.展开更多
This paper reviews the principle and application of the thermally activated desiccant cooling systems with their capability to perform efficiently in hot-humid climates.The paper first introduces the continuous increa...This paper reviews the principle and application of the thermally activated desiccant cooling systems with their capability to perform efficiently in hot-humid climates.The paper first introduces the continuous increase of thermal comfort required in building and their relation with the consumption of conventional energy sources.The importance of desiccant cooling technology and its applications has been introduced as well.The energy and environmental issues with the conventional energy supply and the demand with the environmental problems and conditions mainly related to indoor air quality have been also discussed in the second chapter of this paper.The third part of this paper deals with different techniques and systems applied for cooling and dehumidification including the principles of solid and liquid desiccant applications.Indeed,these systems perform well in hothumid climates.The result of a case study of the solid desiccant cooling system combined with solar energy for the desiccant wheel regeneration has been presented in the last chapter in this paper to show the capability of these systems once well applied in a hot-humid climate.展开更多
This paper mainly shows the demonstration of solar air conditioning systems in China, which includes LiBr-H2O absorption cooling, silica gel-water adsorption chiller, desiccant cooling and hybrid integrated energy sys...This paper mainly shows the demonstration of solar air conditioning systems in China, which includes LiBr-H2O absorption cooling, silica gel-water adsorption chiller, desiccant cooling and hybrid integrated energy systems for buildings. The match of solar collector types and chiller types have been discussed and suggested.展开更多
Solar energy storage is an indispensable and sustainable utilization mode of renewable energy;environment friendly,large-capacity,low heat loss,and long-term storage are critical to improving the integration of solar ...Solar energy storage is an indispensable and sustainable utilization mode of renewable energy;environment friendly,large-capacity,low heat loss,and long-term storage are critical to improving the integration of solar energy supply.Traditional thermal energy storage mode cannot achieve long-term storage due to the heat loss even under the excellent thermal insulation measures.In this work,a solar-powered membrane-based concentration gradient energy storage of liquid desiccant solutions is presented.In the membrane distillation process driven by solar energy under the right solar radiation conditions,the liquid desiccant solution is concentrated gradually and long-term stored as the concentration gradient energy.To this end,the measured temperature of solar hot water is in the range of 40°C to 90°C from May to September,2018,in Xi’an,China.And then,the LiBr solution(50 wt%),the LiCl solution(35 wt%),and the CaCl_(2)solution(40 wt%)were membrane-based concentrated in the temperature range of 42°C to 63°C,separately.The results showed that the water vapor pressure difference decides the water vapor transferred across the membrane pores from the liquid desiccant side to the air side.The energy storage density of liquid desiccant solutions increases along with the increases in temperature and the membrane area.Consequently,when the LiBr,LiCl,and CaCl_(2)solutions are concentrated from 50%to 55%,from 35%to 40%,and from 40%to 45%,separately,the concentration energy storage density is 245 kJ/kg,350 kJ/kg,and 306 kJ/kg,which is equivalent to or even higher than ice storage capacity.Due to the two independent closed cycle of the liquid desiccant solution and air,the liquid desiccant solution’s concentration gradient energy storage can be long-term stored environment-friendly without any insulation measures.展开更多
文摘Solid adsorption system, one of alternative refrigeration systems, is utilized to provide cold for refrigerator or air-conditioner and can be operated by assistance of solar heat. System performance study through computer usage to develop simulation program and simulate behaviors of system operation can give designed system which suits for user’s need. Also, the present study aims to develop dynamic simulation program of solid adsorption refrigeration system operated by solar assistance to simulate behaviors of system operation and its performance. Flat plate collectror is utilized to provide thermal energy for system’s adsorber and activated carbon/methanol is used to be a suitable working pair. Simulation procedure starts with various solar radiation intensities as input energy on solar collector and water is used as collector working fluid. Behavior of system operation can be considered to be 4 steps as isosteric heating, isobaric desorption, isosteric cooling and isobaric adsorption, respectively. This research studies the effect of varying solar radiation intensity on temperature, pressure of adsorber, adsorption ratio at each steps of system operated ranging from 6:00 am (the first day) to 6:00 am (the next day) and system performance which is defined as coefficient of performance, COP. In addition, the simulation result shows monthly average COP of 0.43 compared to a result of another previous research work under the same operating condition and the percentage error is 7.5%.
基金Project(51036001)supported by the National Natural Science Foundation of ChinaProject(2011BAJ03B05)supported by the National Science and Technology Pillar Program during the 12th Five-Year Plan Period of China
文摘A new solar coupling regeneration system is proposed in order to improve the reliability of solar desiccant regeneration system.The new system makes comprehensively use of the solar energy and can also be appropriate for energy-storage in a night operation mode when the electric power supply is at its valley.Comparison of the performance of the new system,the solar thermal regeneration system and the solar electrodialysis regeneration system are made and the influential factors of the performance of the new system are investigated.The results reveal that the new system will be more energy efficient than the solar thermal regeneration system and the solar electrodialysis regeneration system.
文摘Experimental results of an intermittent solar absorption cooling system using parabolic collector are presented in this paper. The system used 6 kg of ammonia as refrigerant, 6 kg of calcium chloride as absorbent and 2 kg activated carbon as a solvent. The generator temperature was found to be 105°C. The system could produce ice at –16°C on the average. These are the most advanced results for a solar ice maker so far. All these successful achievements will speed up the commercial processing of a solar ice maker.
文摘In the present work, an investigation on the application of solar energy to heat a sandy bed impregnated with calcium chloride for recovery of water from atmospheric air is presented. The study also aimed at evaluating the effects of different parameters on the productivity of the system during regeneration. These parameters include system design characteristics and the climatic conditions. An experimental unit has been designed and installed for this purpose in climatic conditions of Taif area, Saudi Arabia. The experimental unit which has a surface area of 0.5 m2, comprises a solar/desiccant collector unit containing sandy bed impregnated with calcium chloride. The sandy layer impregnated with desiccant is subjected to ambient atmosphere to absorb water vapor in the night. During the sunshine period, the layer is covered with glass layer where desiccant is regenerated and water vapor is condensed on the glass surface. Ambient temperature, bed temperature and temperature of glass surface are recorded. Also, the productivity of the system has been evaluated. Desiccant concentration at start of regeneration is selected on the basis of the climatic data of Al-Hada region, which is located at Taif area, Saudi Arabia. Experimental measurements show that about 1.0 liter per m2 of pure water can be regenerated from the desiccant bed at the climatic conditions of Taif. Liquid desiccant with initial concentration of 30% can be regenerated to a final concentration of about 44%. Desiccant concentration at start of regeneration is selected on the basis of the climatic data of Al-Hada region. The climate of Taif city is dry compared with that for Al-Hada region. This method for extracting water from atmospheric air is more suitable for Al-Hada region especially in the fall and winter.
基金supported by the National Natural Science Foundation of China(Grant No.51876064 and 52090064)the Bureau of Shihezi Science&Technology(Grant No.2021ZD02)。
文摘Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power system using the reversible solid oxide fuel cell assisted by solar energy to produce solar fuel and then supply energy products for users during the period without solar radiation.The system runs a solar-assisted solid oxide electrolysis cell mode and a solid oxide fuel cell mode.The thermodynamic models are constructed,and the energetic and exergetic performances are analyzed.Under the design work conditions,the SOEC mode’s overall system energy and exergy efficiencies are 19.0%and 20.5%,respectively.The electrical,energy and exergy efficiencies in the SOFC mode are 51.4%,71.3%,and 45.2%,respectively.The solid oxide fuel cell accounts for 60.0%of total exergy destruction,caused by the electrochemical reactions’thermodynamic irreversibilities.The increase of operating temperature of solid oxide fuel cell from 800℃to 1050℃rises the exergy and energy efficiencies by 11.3%and 12.3%,respectively.Its pressure from 0.2 to 0.7 MPa improves electrical efficiency by 13.8%while decreasing energy and exergy efficiencies by 5.2%and 6.0%,respectively.
文摘This paper reviews the principle and application of the thermally activated desiccant cooling systems with their capability to perform efficiently in hot-humid climates.The paper first introduces the continuous increase of thermal comfort required in building and their relation with the consumption of conventional energy sources.The importance of desiccant cooling technology and its applications has been introduced as well.The energy and environmental issues with the conventional energy supply and the demand with the environmental problems and conditions mainly related to indoor air quality have been also discussed in the second chapter of this paper.The third part of this paper deals with different techniques and systems applied for cooling and dehumidification including the principles of solid and liquid desiccant applications.Indeed,these systems perform well in hothumid climates.The result of a case study of the solid desiccant cooling system combined with solar energy for the desiccant wheel regeneration has been presented in the last chapter in this paper to show the capability of these systems once well applied in a hot-humid climate.
基金support of this research from Nation-al Key Technologies R&D Program ( No.2006BAA04B03) is gratefully acknowledged.
文摘This paper mainly shows the demonstration of solar air conditioning systems in China, which includes LiBr-H2O absorption cooling, silica gel-water adsorption chiller, desiccant cooling and hybrid integrated energy systems for buildings. The match of solar collector types and chiller types have been discussed and suggested.
基金This work is financially supported by National Natural Science Foundation of China(No.51478386).
文摘Solar energy storage is an indispensable and sustainable utilization mode of renewable energy;environment friendly,large-capacity,low heat loss,and long-term storage are critical to improving the integration of solar energy supply.Traditional thermal energy storage mode cannot achieve long-term storage due to the heat loss even under the excellent thermal insulation measures.In this work,a solar-powered membrane-based concentration gradient energy storage of liquid desiccant solutions is presented.In the membrane distillation process driven by solar energy under the right solar radiation conditions,the liquid desiccant solution is concentrated gradually and long-term stored as the concentration gradient energy.To this end,the measured temperature of solar hot water is in the range of 40°C to 90°C from May to September,2018,in Xi’an,China.And then,the LiBr solution(50 wt%),the LiCl solution(35 wt%),and the CaCl_(2)solution(40 wt%)were membrane-based concentrated in the temperature range of 42°C to 63°C,separately.The results showed that the water vapor pressure difference decides the water vapor transferred across the membrane pores from the liquid desiccant side to the air side.The energy storage density of liquid desiccant solutions increases along with the increases in temperature and the membrane area.Consequently,when the LiBr,LiCl,and CaCl_(2)solutions are concentrated from 50%to 55%,from 35%to 40%,and from 40%to 45%,separately,the concentration energy storage density is 245 kJ/kg,350 kJ/kg,and 306 kJ/kg,which is equivalent to or even higher than ice storage capacity.Due to the two independent closed cycle of the liquid desiccant solution and air,the liquid desiccant solution’s concentration gradient energy storage can be long-term stored environment-friendly without any insulation measures.