For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However...For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However,the previous work focuses mainly on the intrinsic physicochemical property changes of the material,but little attention has been paid to the resulting interfacial regulation of the electrode surface,namely the formation of solid electrolyte interphase(SEI)film.In this work,element F,which has the highest electronegativity,was chosen as the doping source to,more effectively,tune the electronic structure of the hard carbon.The effect of F-doping on the physicochemical properties of hard carbon was not only systematically analyzed but also investigated with spectroscopy,optics,and in situ characterization techniques to further verify that appropriate F-doping plays a positive role in constructing a homogenous and inorganic-rich SEI film.The experimentally demonstrated link between the electronic structure of the electrode and the SEI film properties can reframe the doping optimization strategy as well as provide a new idea for the design of electrode materials with low reduction kinetics to the electrolyte.As a result,the optimized sample with the appropriate F-doping content exhibits the best electrochemical performance with high capacity(434.53 mA h g^(-1)at 20mA g^(-1))and excellent rate capability(141 mAh g^(-1)at 400 mA g^(-1)).展开更多
Ionic liquids have been paid much attention and are considered to replace the conventional organic electrolyte and solve the safety issues by virtue of nonvolatility,non-flammability,high ionic conductivity and extend...Ionic liquids have been paid much attention and are considered to replace the conventional organic electrolyte and solve the safety issues by virtue of nonvolatility,non-flammability,high ionic conductivity and extended electrochemical steady window.The paper introduces ionic liquids electrolyte on basis of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI),which shows a wide electrochemical window (0.5-4.5 V vs.Li+/Li),and is theoretically feasible as an electrolyte for Li/LiFePO4batteries to improve the safety.Linear sweep voltammetry (LSV) was performed to investigate the electrochemical stability window of the polymer electrolyte.Interfacial resistance for Li/electrolyte/Li symmetric cells and Li/electrolyte/LiFePO4 cells were studied by electrochemical impedance spectroscopy (EIS).The results showed that additive vinylene carbonate (VC) enhances the formation of solid electrolyte interphase film to protect lithium anodes from corrosion and improves the compatibility of ionic liquid electrolyte towards lithium anodes.Accordingly,Li/LiFePO4cells delivers the initial discharge capacity of 124 mAh g-1 at a current rate of 0.1C in the ionic liquid electrolyte (EMITFSI+0.8 mol L-1LiTFSI+5 wt%VC),and shows better cyclability than in the ionic liquid electrolyte without VC.展开更多
The battery management system is employed to monitor the external temperature of the lithium-ion battery in order to detect any potential overheating.However,this outside–in detection method often suffers from a lag ...The battery management system is employed to monitor the external temperature of the lithium-ion battery in order to detect any potential overheating.However,this outside–in detection method often suffers from a lag and is therefore unable to accurately predict the battery’s real-time state.Herein,an inside–out frequency response approach is used to accurately monitor the battery’s state at various temperatures in real-time and correlate it with the solid electrolyte interphase(SEI)evolution of the graphite electrode.The SEI evolution at temperatures of−15,25,60,and 90℃exhibits certain regular characteristics with temperature change.At a temperature of−15℃,the Li^(+)-solvent interaction of lithium-ion slowed down,resulting in a significant reduction in performance.At 25℃,a LiF-rich inorganic SEI was identified as forming,which facilitated lithium-ion transportation.However,high temperatures would induce decomposition of lithium hexafluorophosphate(LiPF_(6))and lithium-ion electrolyte.At the extreme temperature of 90℃,the SEI would be organic-rich,and Li_(x)P_(y)F_(z),a decomposition product of lithium salts,was further oxidized to Li_(x)PO_(y)F_(z),which led to a surge in the charge-transfer resistance at SEI(R_(sei))and a reduction in Coulombic efficiency(CE).This changing relationship can be recorded in real time from the inside out by electrochemical impedance spectroscopy(EIS)testing.This provides a new theoretical basis for the structural evolution of lithium-ion batteries and the regular characterization of EIS.展开更多
基金National Key R&D Program of China,Grant/Award Number:2022YFB4000120Fundamental Research Funds for the Central Universities,Grant/Award Number:2022ZYGXZR101。
文摘For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However,the previous work focuses mainly on the intrinsic physicochemical property changes of the material,but little attention has been paid to the resulting interfacial regulation of the electrode surface,namely the formation of solid electrolyte interphase(SEI)film.In this work,element F,which has the highest electronegativity,was chosen as the doping source to,more effectively,tune the electronic structure of the hard carbon.The effect of F-doping on the physicochemical properties of hard carbon was not only systematically analyzed but also investigated with spectroscopy,optics,and in situ characterization techniques to further verify that appropriate F-doping plays a positive role in constructing a homogenous and inorganic-rich SEI film.The experimentally demonstrated link between the electronic structure of the electrode and the SEI film properties can reframe the doping optimization strategy as well as provide a new idea for the design of electrode materials with low reduction kinetics to the electrolyte.As a result,the optimized sample with the appropriate F-doping content exhibits the best electrochemical performance with high capacity(434.53 mA h g^(-1)at 20mA g^(-1))and excellent rate capability(141 mAh g^(-1)at 400 mA g^(-1)).
基金Sponsored by the Natural Science Foundation of Heilongjiang Province of China (Grant No.B2007-05)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (Grant No.HIT.NSRIF.2009121)
文摘Ionic liquids have been paid much attention and are considered to replace the conventional organic electrolyte and solve the safety issues by virtue of nonvolatility,non-flammability,high ionic conductivity and extended electrochemical steady window.The paper introduces ionic liquids electrolyte on basis of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI),which shows a wide electrochemical window (0.5-4.5 V vs.Li+/Li),and is theoretically feasible as an electrolyte for Li/LiFePO4batteries to improve the safety.Linear sweep voltammetry (LSV) was performed to investigate the electrochemical stability window of the polymer electrolyte.Interfacial resistance for Li/electrolyte/Li symmetric cells and Li/electrolyte/LiFePO4 cells were studied by electrochemical impedance spectroscopy (EIS).The results showed that additive vinylene carbonate (VC) enhances the formation of solid electrolyte interphase film to protect lithium anodes from corrosion and improves the compatibility of ionic liquid electrolyte towards lithium anodes.Accordingly,Li/LiFePO4cells delivers the initial discharge capacity of 124 mAh g-1 at a current rate of 0.1C in the ionic liquid electrolyte (EMITFSI+0.8 mol L-1LiTFSI+5 wt%VC),and shows better cyclability than in the ionic liquid electrolyte without VC.
基金supported by Natural Science Foundation of Chongqing(No.2022NSCQ-MSX4268)National Natural Science Foundation of China(No.22209075).
文摘The battery management system is employed to monitor the external temperature of the lithium-ion battery in order to detect any potential overheating.However,this outside–in detection method often suffers from a lag and is therefore unable to accurately predict the battery’s real-time state.Herein,an inside–out frequency response approach is used to accurately monitor the battery’s state at various temperatures in real-time and correlate it with the solid electrolyte interphase(SEI)evolution of the graphite electrode.The SEI evolution at temperatures of−15,25,60,and 90℃exhibits certain regular characteristics with temperature change.At a temperature of−15℃,the Li^(+)-solvent interaction of lithium-ion slowed down,resulting in a significant reduction in performance.At 25℃,a LiF-rich inorganic SEI was identified as forming,which facilitated lithium-ion transportation.However,high temperatures would induce decomposition of lithium hexafluorophosphate(LiPF_(6))and lithium-ion electrolyte.At the extreme temperature of 90℃,the SEI would be organic-rich,and Li_(x)P_(y)F_(z),a decomposition product of lithium salts,was further oxidized to Li_(x)PO_(y)F_(z),which led to a surge in the charge-transfer resistance at SEI(R_(sei))and a reduction in Coulombic efficiency(CE).This changing relationship can be recorded in real time from the inside out by electrochemical impedance spectroscopy(EIS)testing.This provides a new theoretical basis for the structural evolution of lithium-ion batteries and the regular characterization of EIS.