期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
Regulation of Lithium-Ion Flux by Nanotopology Lithiophilic Boron-Oxygen Dipole in Solid Polymer Electrolytes for Lithium-Metal Batteries 被引量:1
1
作者 Manying Cui Hongyang Zhao +9 位作者 Yanyang Qin Shishi Zhang Ruxin Zhao Miao Zhang Wei Yu Guoxin Gao Xiaofei Hu Yaqiong Su Kai Xi Shujiang Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期74-82,共9页
Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic frame... Inhomogeneous lithium-ion(Li^(+))deposition is one of the most crucial problems,which severely deteriorates the performance of solid-state lithium metal batteries(LMBs).Herein,we discovered that covalent organic framework(COF-1)with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li^(+)even deposition in asymmetric solid polymer electrolytes.This in situ prepared 3D cross-linked network Poly(ACMO-MBA)hybrid electrolyte simultaneously delivers outstanding ionic conductivity(1.02×10^(-3)S cm^(-1)at 30°C)and excellent mechanical property(3.5 MPa).The defined nanosized channel in COF-1 selectively conducts Li^(+)increasing Li^(+)transference number to 0.67.Besides,The COF-1 layer and Poly(ACMO-MBA)also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability.The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h.The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles.Moreover,the Li‖LiFePO_(4)full cell stably cycles with a capacity retention of 85%after 500 cycles.the Li‖LiFePO_(4)pouch full exhibits excellent safety performance under pierced and cut conditions.This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs. 展开更多
关键词 covalent organic framework ion transport regulation lithium metal battery solid polymer electrolyte
下载PDF
Ultra-homogeneous dense Ag nano layer enables long lifespan solid-state lithium metal batteries
2
作者 Yaning Liu Tianqi Yang +13 位作者 Ruyi Fang Chengwei Lu Ruojian Ma Ke Yue Zhen Xiao Xiaozheng Zhou Wenkui Zhang Xinping He Yongping Gan Jun Zhang Xinhui Xia Hui Huang Xinyong Tao Yang Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期110-119,共10页
The unstable electrolyte/lithium(Li)anode interface has been one of the key challenges in realizing high energy density solid-state lithium metal batteries(LMBs)applications.Herein,a dense and uniform silver(Ag)nano i... The unstable electrolyte/lithium(Li)anode interface has been one of the key challenges in realizing high energy density solid-state lithium metal batteries(LMBs)applications.Herein,a dense and uniform silver(Ag)nano interlayer with a thickness of∼35 nm is designed accurately by magnetron sputtering technology to optimize the electrolyte/Li anode interface.This Ag nano layer reacts with Li metal anode to in-situ form Li-Ag alloy,thus enhancing the physical interfacial contact,and further improving the interfacial wettability and compatibility.In particular,the Li-Ag alloy is inclined to form AgLi phase proved by cryo-TEM and DFT,effectively preventing SN from continuously“attacking”the Li metal anode due to the lower adsorption of succinonitrile(SN)molecules on AgLi than that of pure Li metal,thereby significantly reinforcing the interfacial stability.Hence,the enhanced physical and chemical stability of electrolyte/Li anode interface promotes the homogeneous deposition of Li^(+)and inhibits the dendrite growth.The Li-symmetric cell maintains stable operation for up to 1700 h and the cycling stability of LiFePO_(4)|SPE|Li full cell is remarkably improved at room temperature(capacity retention rate of 91.9%for 200 cycles).This work opens an effective way for accurate and controllable interface design of long lifespan solid-state LMBs. 展开更多
关键词 Silvernano layer Poly(ethylene oxide) solid polymer electrolyte SUCCINONITRILE Lithium metal battery
下载PDF
Mechanism of high Li-ion conductivity in poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network based electrolyte revealed by solid-state NMR
3
作者 Fan Li Tiantian Dong +5 位作者 Yi Ji Lixin Liang Kuizhi Chen Huanrui Zhang Guanglei Cui Guangjin Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期377-383,I0010,共8页
Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked pol... Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues. 展开更多
关键词 ssNMR Lithium-ion mobility CROSS-LINK solid polymer electrolyte
下载PDF
Incombustible solid polymer electrolytes:A critical review and perspective
4
作者 Kai Wu Jin Tan +4 位作者 Zhenfang Liu Chenguang Bao Ao Li Qi Liu Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期264-281,I0007,共19页
Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-dens... Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries. 展开更多
关键词 Non-flammable electrolyte solid polymer electrolyte High safety electrolyte solid state electrolyte solid state battery
下载PDF
Armoring lithium metal anode with soft–rigid gradient interphase toward high-capacity and long-life all-solid-state battery
5
作者 Rui Zhang Biao Chen +5 位作者 Yuhan Ma Yue Li Junwei Sha Liying Ma Chunsheng Shi Naiqin Zhao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1279-1289,共11页
Solid polymer electrolytes(SPEs)are highly promising for realizing high-capacity,low-cost,and safe Li metal batteries.However,the Li dendritic growth and side reactions between Li and SPEs also plague these systems.He... Solid polymer electrolytes(SPEs)are highly promising for realizing high-capacity,low-cost,and safe Li metal batteries.However,the Li dendritic growth and side reactions between Li and SPEs also plague these systems.Herein,a fluorinated lithium salt coating(FC)with organic-inorganic gradient and soft–rigid feature is introduced on Li surface as an artificial protective layer by the in-situ reaction between Li metal and fluorinated carboxylic acid.The FC layer can improve the interface stability and wettability between Li and SPEs,assist the transport of Li ions,and guide Li nucleation,contributing to a dendrite-free Li deposition and long-lifespan Li metal batteries.The symmetric cell with FC-Li anodes exhibits a high areal capacity of 1 mAh cm^(-2)at 0.5 mA cm^(-2),and an ultra-long lifespan of 2000 h at a current density of 0.1 mA cm^(-2).Moreover,the full cell paired with the LiFePO4 cathode exhibits improved cycling stability,remaining 83.7%capacity after 500 cycles at 1 C.When matching with the S cathode,the FC layer can prevent the shuttle effect,contributing to stable and high-capacity Li–S battery.This work provided a promising way for the construction of stable all-solid-state lithium metal batteries with prolonged lifespan. 展开更多
关键词 All-solid-state battery solid polymer electrolyte Li metal anode Li nucleation Interface stability
下载PDF
In-situ polymerized PEO-based solid electrolytes contribute better Li metal batteries:Challenges,strategies,and perspectives
6
作者 Zhihui Jia Yong Liu +4 位作者 Haoming Li Yi Xiong Yingjie Miao Zhongxiu Liu Fengzhang Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期548-571,共24页
Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteri... Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed. 展开更多
关键词 In-situ polymerization Polyethylene oxide solid polymer electrolytes Lithium metal anodes
下载PDF
Bifunctional flame retardant solid-state electrolyte toward safe Li metal batteries 被引量:4
7
作者 Qiang Lv Yajie Song +10 位作者 Bo Wang Shangjie Wang Bochen Wu Yutong Jing Huaizheng Ren Shengbo Yang Lei Wang Lihui Xiao Dianlong Wang Huakun Liu Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期613-622,I0014,共11页
Solid polymer electrolytes(SPEs)are one of the most promising alternatives to flammable liquid electrolytes for building safe Li metal batteries.Nevertheless,the poor ionic conductivity at room temperature(RT)and low ... Solid polymer electrolytes(SPEs)are one of the most promising alternatives to flammable liquid electrolytes for building safe Li metal batteries.Nevertheless,the poor ionic conductivity at room temperature(RT)and low resistance to Li dendrites seriously hinder the commercialization of SPEs.Herein,we design a bifunctional flame retardant SPE by combining hydroxyapatite(HAP)nanomaterials with Nmethyl pyrrolidone(NMP)in the PVDF-HFP matrix.The addition of HAP generates a hydrogen bond network with the PVDF-HFP matrix and cooperates with NMP to facilitate the dissociation of Li TFSI in the PVDF-HFP matrix.Consequently,the prepared SPE demonstrates superior ionic conductivity at RT,excellent fireproof properties,and strong resistance to Li dendrites.The assembled Li symmetric cell with prepared SPE exhibits a stable cycling performance of over 1200 h at 0.2 m A cm^(-2),and the solid-state LiFePO_4||Li cell shows excellent capacity retention of 85.3%over 600 cycles at 0.5 C. 展开更多
关键词 solid polymer electrolytes Safe Li metal batteries Li dendrites Hydroxyapatite N-methyl pyrrolidone PVDF-HFP Fireproof property
下载PDF
Solid polymer electrolytes in all-solid-state lithium metal batteries:From microstructures to properties 被引量:2
8
作者 Zongxi Lin Ouwei Sheng +7 位作者 Xiaohan Cai Dan Duan Ke Yue Jianwei Nai Yao Wang Tiefeng Liu Xinyong Tao Yujing Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期358-378,I0009,共22页
All-solid-state lithium(Li)metal batteries(ASSLMBs)are considered one of the most promising secondary batteries due to their high theoretical capacity and high safety performance.However,low room-temperature ionic con... All-solid-state lithium(Li)metal batteries(ASSLMBs)are considered one of the most promising secondary batteries due to their high theoretical capacity and high safety performance.However,low room-temperature ionic conductivity and poor interfacial stability are two key factors affecting the practical application of ASSLMBs,and our understanding of the mechanisms behind these key problems from microscopic perspective is still limited.In this review,the mechanisms and advanced characterization techniques of ASSLMBs are summarized to correlate the microstructures and properties.Firstly,we summarize the challenges faced by solid polymer electrolytes(SPEs)in ASSLMBs,such as the low roomtemperature ionic conductivity and the poor interfacial stability.Secondly,several typical improvement methods of polymer ASSLMBs are discussed,including composite SPEs,ultra-thin SPEs,SPEs surface modification and Li anode surface modification.Finally,we conclude the characterizations for correlating the microstructures and the properties of SPEs,with emphasis on the use of emerging advanced techniques(e.g.,cryo-transmission electron microscopy)for in-depth analyzing ASSLMBs.The influence of the microstructures on the properties is very important.Until now,it has been difficult for us to understand the microstructures of batteries.However,some recent studies have demonstrated that we have a better understanding of the microstructures of batteries.Then we suggest that in situ characterization,nondestructive characterization and sub-angstrom resolution are the key technologies to help us further understand the batteries'microstructures and promote the development of batteries.And potential investigations to understand the microstructures evolution and the batteries behaviors are also prospected to expect further reasonable theoretical guidance for the design of ASSLMBs with ideal performance. 展开更多
关键词 Lithium metal batteries solid polymer electrolytes MICROSTRUCTURES PROPERTIES
下载PDF
Polymer dispersed ionic liquid electrolytes with high ionic conductivity for ultrastable solid-state lithium batteries 被引量:2
9
作者 Shengyu Qin Yaping Cao +7 位作者 Jianying Zhang Yunxiao Ren Chang Sun Shuoning Zhang Lanying Zhang Wei Hu Meina Yu Huai Yang 《Carbon Energy》 SCIE CSCD 2023年第5期115-126,共12页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries. 展开更多
关键词 high ionic conductivity lithium batteries solid polymer electrolytes solid-state batteries
下载PDF
A critical review on composite solid electrolytes for lithium batteries:Design strategies and interface engineering 被引量:2
10
作者 Tianqi Yang Cheng Wang +7 位作者 Wenkui Zhang Yang Xia Hui Huang Yongping Gan Xinping He Xinhui Xia Xinyong Tao Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期189-209,共21页
The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the curren... The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs. 展开更多
关键词 Inorganic solid electrolytes Polymer solid electrolytes Composite solid electrolytes Interface engineering
下载PDF
Mechanistically Novel Frontal-Inspired In Situ Photopolymerization:An Efficient Electrode|Electrolyte Interface Engineering Method for High Energy Lithium Metal Polymer Batteries 被引量:1
11
作者 Ishamol Shaji Diddo Diddens +1 位作者 Martin Winter Jijeesh Ravi Nair 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期273-282,共10页
The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention ha... The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention has been given to the eco-friendly and rapid ultraviolet(UV)-induced in situ photopolymerization process to prepare solid-state polymer electrolytes.In this respect,an innovative method is proposed here to overcome the challenges of UV-induced photopolymerization(UV-curing)in the zones where UV-light cannot penetrate,especially in LMPBs where thick electrodes are used.The proposed frontal-inspired photopolymerization(FIPP)process is a diverged frontal-based technique that uses two classes(dual)of initiators to improve the slow reaction kinetics of allyl-based monomers/oligomers by at least 50%compared with the conventional UV-curing process.The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations.Indeed,the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV-irradiation step as the case with the classical frontal photopolymerization technique.Besides,the FIPP-based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes.Furthermore,the LMPB cells fabricated using the in situ-FIPP process with high mass loading LiFePO_(4)electrodes(5.2 mg cm^(-2))demonstrate higher rate capability,and a 50%increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large-scale solid-state battery production. 展开更多
关键词 cathodelelectrolyte interface frontal-inspired photopolymerization in situ polymerization lithium metal polymer battery solid polymer electrolyte
下载PDF
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
12
作者 Yu-Qin Mao Guang-He Dong +3 位作者 Wei-Bin Zhu Yuan-Qing Li Pei Huang Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2024年第1期60-67,共8页
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa... Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. 展开更多
关键词 solid polymer electrolyte Ti_(3)C_(2)T_(x)MXene Poly(ethylene oxide) Glass fiber cloth All-solid-state Li metal Battery
下载PDF
Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries 被引量:17
13
作者 Liansheng Li Yuanfu Deng Guohua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期154-177,共24页
Solid polymer electrolytes(SPEs), such as polyethylene oxide(PEO), are characteristic of good flexibility and excellent processability, but they suffer from low ionic conductivity and small Li+transference number at a... Solid polymer electrolytes(SPEs), such as polyethylene oxide(PEO), are characteristic of good flexibility and excellent processability, but they suffer from low ionic conductivity and small Li+transference number at ambient temperature. Inorganic solid electrolytes(ISEs), garnet-type Li7La3Zr2O12 and its derivatives(LLZO-based) in particular, possess high ionic conductivity at room temperature, wide electrochemical stability window, large Li+transference number as well as good stability against Li metal anode.Nevertheless, lithium dendrites growth, interfacial contact issue and brittle nature of LLZO-based ceramic electrolytes prevent their practical applications. In response to these shortcomings, LLZO-based/polymer solid composite electrolytes(SCEs), taking complementary advantages of two kinds of electrolytes, and thus simultaneously improving the electrode wettability, ionic conductivity and mechanical strength, have been made to develop high-performance SCEs in recent years. Herein, the intrinsic properties and research progress of LLZO-based/polymer SCEs, including LLZO-based/PEO SCEs(LLZO-based/PEO SCEs with uniform dispersion of LLZO-based fillers and LLZO-based/PEO layered SCEs) and LLZO-based/novel polymers SCEs, are summarized. Besides, comprehensive updates on their applications in solid-state batteries are also presented. Finally, challenges and perspectives of LLZO-based/polymer SCEs for advanced allsolid-state lithium batteries(ASSLBs) are suggested. This review paper aims to provide systematic research progress of LLZO-based/polymer SCEs, to allow for more efficient and target-oriented research on improving LLZO-based/polymer SCEs. 展开更多
关键词 solid polymer electrolyte Garnet-type electrolyte solid composite electrolyte All-solid-state battery
下载PDF
Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries 被引量:8
14
作者 Hao Chen Mengting Zheng +5 位作者 Shangshu Qian Han Yeu Ling Zhenzhen Wu Xianhu Liu Cheng Yan Shanqing Zhang 《Carbon Energy》 SCIE CAS 2021年第6期929-956,共28页
Solid polymer electrolytes(SPEs)have become increasingly attractive in solid-state lithium-ion batteries(SSLIBs)in recent years because of their inherent properties of flexibility,processability,and interfacial compat... Solid polymer electrolytes(SPEs)have become increasingly attractive in solid-state lithium-ion batteries(SSLIBs)in recent years because of their inherent properties of flexibility,processability,and interfacial compatibility.However,the commercialization of SPEs remains challenging for flexible and high-energy-density LIBs.The incorporation of functional additives into SPEs could significantly improve the electrochemical and mechanical properties of SPEs and has created some historical milestones in boosting the development of SPEs.In this study,we review the roles of additives in SPEs,highlighting the working mechanisms and functionalities of the additives.The additives could afford significant advantages in boosting ionic conductivity,increasing ion transference number,improving high-voltage stability,enhancing mechanical strength,inhibiting lithium dendrite,and reducing flammability.Moreover,the application of functional additives in high-voltage cathodes,lithium-sulfur batteries,and flexible lithiumion batteries is summarized.Finally,future research perspectives are proposed to overcome the unresolved technical hurdles and critical issues in additives of SPEs,such as facile fabrication process,interfacial compatibility,investigation of the working mechanism,and special functionalities. 展开更多
关键词 functional additive high voltage ionic conductivity lithium-ion batteries solid polymer electrolyte
下载PDF
Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries 被引量:5
15
作者 Tengrui Wang Ruiqi Zhang +4 位作者 Yongmin Wu Guannan Zhu Chenchen Hu Jiayun Wen Wei Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期187-190,I0006,共5页
Lithium-ion batteries(LIBs)have greatly facilitated our daily lives since 1990s[1,2].To meet the ever-increasing demand on energy density,Li metal is seen as the ultimate anode because of its ultra-high specific capac... Lithium-ion batteries(LIBs)have greatly facilitated our daily lives since 1990s[1,2].To meet the ever-increasing demand on energy density,Li metal is seen as the ultimate anode because of its ultra-high specific capacity(3860 m Ah/g)and the lowest electrochemical potential(-3.04 V vs.the standard hydrogen electrode)[3–6].However,issues of Li metal anode,such as Li dendrite formation and large volume change during plating/stripping。 展开更多
关键词 solid-state batteries solid polymer electrolytes BLENDING Li6.5La3Zr1.5Ta0.5O12 Mechanical strength
下载PDF
Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries 被引量:4
16
作者 Q.Yang A.Wang +1 位作者 J.Luo W.Tang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期202-215,共14页
Because of its superior safety and excellent processability,solid polymer electrolytes(SPEs)have attracted widespread attention.In lithium based batteries,SPEs have great prospects in replacing leaky and flammable liq... Because of its superior safety and excellent processability,solid polymer electrolytes(SPEs)have attracted widespread attention.In lithium based batteries,SPEs have great prospects in replacing leaky and flammable liquid electrolytes.However,the low ionic conductivity of SPEs cannot meet the requirements of high energy density systems,which is also an important obstacle to its practical application.In this respect,escalating charge carriers(i.e.Li^(+))and Li^(+)transport paths are two major aspects of improving the ionic conductivity of SPEs.This article reviews recent advances from the two perspectives,and the underlying mechanism of these proposed strategies is discussed,including increasing the Li^(+)number and optimizing the Li^(+)transport paths through increasing the types and shortening the distance of Li^(+)transport path.It is hoped that this article can enlighten profound thinking and open up new ways to improve the ionic conductivity of SPEs. 展开更多
关键词 solid polymer electrolyte Ion conductivity Charge carriers Transport paths Lithium battery
下载PDF
The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+transportation 被引量:7
17
作者 Zhichuan Shen Yifeng Cheng +3 位作者 Shuhui Sun Xi Ke Liying Liu Zhicong Shi 《Carbon Energy》 CAS 2021年第3期482-508,共27页
Compared with commercial lithium batteries with liquid electrolytes,all-solidstate lithium batteries(ASSLBs)possess the advantages of higher safety,better electrochemical stability,higher energy density,and longer cyc... Compared with commercial lithium batteries with liquid electrolytes,all-solidstate lithium batteries(ASSLBs)possess the advantages of higher safety,better electrochemical stability,higher energy density,and longer cycle life;therefore,ASSLBs have been identified as promising candidates for next-generation safe and stable high-energy-storage devices.The design and fabrication of solid-state electrolytes(SSEs)are vital for the future commercialization of ASSLBs.Among various SSEs,solid polymer composite electrolytes(SPCEs)consisting of inorganic nanofillers and polymer matrix have shown great application prospects in the practice of ASSLBs.The incorporation of inorganic nanofillers into the polymer matrix has been considered as a crucial method to achieve high ionic conductivity for SPCE.In this review,the mechanisms of Li+transport variation caused by incorporating inorganic nanofillers into the polymer matrix are discussed in detail.On the basis of the recent progress,the respective contributions of polymer chains,passive ceramic nanofillers,and active ceramic nanofillers in affecting the Li+transport process of SPCE are reviewed systematically.The inherent relationship between the morphological characteristics of inorganic nanofillers and the ionic conductivity of the resultant SPCE is discussed.Finally,the challenges and future perspectives for developing high-performance SPCE are put forward.This review aims to provide possible strategies for the further improvement of ionic conductivity in inorganic nanoscale filler-reinforced SPCE and highlight their inspiration for future research directions. 展开更多
关键词 all-solid-state lithium batteries inorganic nanofillers Li+transportation solid polymer composite electrolyte
下载PDF
Preparation and characterization of poly(lithium acrylate-arcylonitrile)/LiClO_4-LiNO_3-LiBr solid polymer electrolytes 被引量:4
18
作者 潘春跃 袁云兰 +2 位作者 陈振华 徐先华 张坚 《Journal of Central South University of Technology》 2005年第1期68-72,共5页
Through orthogonal experiment, a new type of LiClO4-LiNO3-LiBr eutectic salt with optimum mole ratio of n(LiClO4)∶n(LiNO3)∶n(LiBr)=1.6∶3.8∶1.0 was prepared. The poly(lithium acrylate-acrylonitrile)/LiClO4-... Through orthogonal experiment, a new type of LiClO4-LiNO3-LiBr eutectic salt with optimum mole ratio of n(LiClO4)∶n(LiNO3)∶n(LiBr)=1.6∶3.8∶1.0 was prepared. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes were prepared with poly(lithium acrylate-acrylonitrile) and (LiClO4-LiNO3-LiBr) eutectic salts. The effect of LiClO4-LiNO3-LiBr eutectic salts content on the conductivity of solid polymer electrolytes was studied by alternating current impedance method, and the structures of eutectic salts and solid polymer electrolytes were characterized by differential thermal analysis, infrared spectroscopy and X-ray diffractometry. The results show that the room temperature conductivity of LiClO4-LiNO3-LiBr eutectic salts reaches (3.11×10-4 S·cm-1.) The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes possess the highest room temperature conductivity at 70% LiClO4-LiNO3-LiBr eutectic salts content, and exhibit lower glass transition temperature of 75 ℃ compared with that of poly(lithium acrylate-acrylonitrile) of 105 ℃. A complex may be formed in the solid polymer electrolytes from the differential thermal analysis and infrared spectroscopy analysis. X-ray diffraction results show that the poly(lithium acrylate-acrylonitrile) can suppress the crystallization of eutectic salts in this system. 展开更多
关键词 solid polymer electrolyte CONDUCTIVITY eutectic salt LiClO_4 LiNO_3 LIBR arcylonitrile
下载PDF
3D flame-retardant skeleton reinforced polymer electrolyte for solid-state dendrite-free lithium metal batteries 被引量:2
19
作者 Xiaojiao Zheng Jiawei Wu +2 位作者 Jing Chen Xiaodong Wang Zhenglong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期174-181,I0006,共9页
For solid polymer electrolytes(SPEs),improving their mechanical and electrochemical properties is the key to obtaining batteries with higher safety and higher energy density.Herein,a novel synergistic strategy propose... For solid polymer electrolytes(SPEs),improving their mechanical and electrochemical properties is the key to obtaining batteries with higher safety and higher energy density.Herein,a novel synergistic strategy proposed is preparing a 3D flame-retardant skeleton(3DPA)and adding nano-multifunctional fillers(Li-ILs@ZIF-8).In addition to providing mechanical support for the polyethylene oxide(PEO)matrix,3DPA also has further contributed to the system’s flame retardancy and further improved the safety.Simultaneously,the electrochemical performance is fully guaranteed by rigid Li-ILs@ZIF-8,which provides fast migration channels forLi^(+),reduces the crystallinity of PEO and effectively inhibits lithium dendrites.The limiting oxygen index of the optimal sample(PL3Z/PA)is as high as 20.5%,and the ionic conductivity reaches 2.89×10^(-4) and 0.91×10^(-3) S cm^(-1) at 25 and 55°C,respectively.The assembled Li|PL3Z/PA|Li battery can be cycled stably for more than 1000 h at a current density of 0.1 m A cm^(-2) without short circuit being pierced by lithium dendrites.The specific capacity of the LFP|PL3Z/PA|Li battery was 160.5 m Ah g^(-1) under a current density of 0.5 C,and the capacity retention rate was 90.0%after 300 cycles. 展开更多
关键词 solid polymer electrolytes Polyethylene oxide 3D flame-retardant skeleton Multifunctional fillers Synergistic effect
下载PDF
A flexible, robust, and high ion-conducting solid electrolyte membranes enabled by interpenetrated network structure for all-solid-state lithium metal battery 被引量:2
20
作者 Zhenchuan Tian Dukjoon Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期603-611,共9页
Poly(vinyl alcohol)/poly(ethylene glycol)(PVA/PEG) semi-interpenetrating networks(s-IPN) were synthesized for the application of solid electrolyte membranes of lithium metal batteries. Thermal, mechanical and dimensio... Poly(vinyl alcohol)/poly(ethylene glycol)(PVA/PEG) semi-interpenetrating networks(s-IPN) were synthesized for the application of solid electrolyte membranes of lithium metal batteries. Thermal, mechanical and dimensional stability, lithium-ion conductivity, interfacial compatibility, and cell performance were evaluated to assure their application. As this s-IPN structure suppressed the crystallinity by formation of network structure, both the lithium-ion conductivity and mechanical strength were simultaneously enhanced. The PVA/PEG-3s-IPN showed the highest lithium-ion conductivity of 3.26 × 10^(-4)S cm^(-1)in a wide electrochemical window(5.8 V vs. Li/Li^(+)), maintaining the robust solid-state with the tensile strength beyond 16.2 MPa at room temperature. The synthesized solid electrolyte membranes exhibited quite high specific capacity over 122 m Ah g^(-1)at 0.1 C from Li|PVA/PEG-3s-IPN|LiFePO_(4) cell and the long-term stable lithium stripping/plating performance for 1000 cycles from Li symmetric cell. 展开更多
关键词 solid polymer electrolyte Lithium battery SEMI-IPN Lithium-ion conductivity
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部