The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty pro...The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty process of acid leaching-selective electrodeposition-deep impurity removal-regeneration was proposed to recovery of the CuS slag,which has been efficient transferred to high purity cathode copper and commercially available ternary precursors.Copper cathode with a purity of 99.67%was prepared under electrochemical reaction conditions at-0.55 V for 2 h.A novel impurity remover-Mn powder,which was used to remove the residual impurities and as a feedstock for the ternary precursor.Finally,NCM523 was regenerated by co-precipitation.The process is superior to the traditional process in economy,energy consumption,CO_(2)emissions,product purity and process duration.This study provides a new approach for solid waste recovery and precious metal enrichment.展开更多
This study reports the removal of amoxicillin(AMX)in aqueous media using the electroFenton process in the presence of a graphite cathode recovered from used batteries.The impact of the relevant parameters on the elect...This study reports the removal of amoxicillin(AMX)in aqueous media using the electroFenton process in the presence of a graphite cathode recovered from used batteries.The impact of the relevant parameters on the electroFenton process,namely the applied current intensity,the temperature,the initial concentration of AMX and the initial concentration of ferrous ions were investigated.The results showed that the optimal values were:I=600 mA,T=25℃,[AMX]_(0)=0.082 mmol·L^( 1) and[Fe^(2+)]=1 mmol·L^(1),leading to 95%degradation and 74%mineralization.The model parameters of AMX mineralization were determined using nonlinear methods,showing that it follows a pseudosecondorder kinetic.The Energy consumption(EC)calculated under the optimal values was found to be 0.79 kWhg 1,which was of the same order of magnitude of those reported in other findings;while it is noteworthy that the electrodes used in our study are of a lower cost.展开更多
基金financially supported by the Key Project of Research and Development Plan of Jiangxi Province(Nos.20223BBG74006 and 20201BBE51007)the National Science Foundation of China(No.52060018)the National Science Fund for Distinguished Young Scholars(No.52125002)。
文摘The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty process of acid leaching-selective electrodeposition-deep impurity removal-regeneration was proposed to recovery of the CuS slag,which has been efficient transferred to high purity cathode copper and commercially available ternary precursors.Copper cathode with a purity of 99.67%was prepared under electrochemical reaction conditions at-0.55 V for 2 h.A novel impurity remover-Mn powder,which was used to remove the residual impurities and as a feedstock for the ternary precursor.Finally,NCM523 was regenerated by co-precipitation.The process is superior to the traditional process in economy,energy consumption,CO_(2)emissions,product purity and process duration.This study provides a new approach for solid waste recovery and precious metal enrichment.
文摘This study reports the removal of amoxicillin(AMX)in aqueous media using the electroFenton process in the presence of a graphite cathode recovered from used batteries.The impact of the relevant parameters on the electroFenton process,namely the applied current intensity,the temperature,the initial concentration of AMX and the initial concentration of ferrous ions were investigated.The results showed that the optimal values were:I=600 mA,T=25℃,[AMX]_(0)=0.082 mmol·L^( 1) and[Fe^(2+)]=1 mmol·L^(1),leading to 95%degradation and 74%mineralization.The model parameters of AMX mineralization were determined using nonlinear methods,showing that it follows a pseudosecondorder kinetic.The Energy consumption(EC)calculated under the optimal values was found to be 0.79 kWhg 1,which was of the same order of magnitude of those reported in other findings;while it is noteworthy that the electrodes used in our study are of a lower cost.