Unusual polyphase inclusions of K-feldspar+quartz+titanite+solid salt and K-feldspar+albite+quartz+epidote with textures similar to the other K-feldspar+quartz inclusions were found in omphacite grains from the Sulu u...Unusual polyphase inclusions of K-feldspar+quartz+titanite+solid salt and K-feldspar+albite+quartz+epidote with textures similar to the other K-feldspar+quartz inclusions were found in omphacite grains from the Sulu ultrahigh pressure (UHP) eclogites. One of these inclusions contain square to round solid salt inclusions of KCl-NaCl composition. Such a mineral assemblage within K-feldspar-bearing inclusions hosted by UHP metamorphic phases suggests that (1) potassium granitic melts enriched in Cl components were presented during UHP metamorphism or at the early stage of rapid exhumation of deeply subducted continental slab; (2) they were resulted from reactions between the incoming granitic melts and quartz (or coesite); and (3) solid salt inclusions of NaCl-KCl were derived from dehydration and desiccation of Cl-bearing melts. Our new observations further demonstrate that during the tectonic evolution of UHP rocks, fertile components within deeply subducted continental materials could undergo partial melting, leading to the formation of Cl-bearing potassium granitic melts and substantial migration of fluid-conservative elements (e.g. Ti, Hf) within the UHP slab.展开更多
Analyzes on solid potassium mineral reserves calculation methods and existing problems of chaerhan salt lake,t with many parameters comparison solid potassium mineral reserves calculation results are reliable,the
A novel salt-assisted low temperature solid state method using CoCl2.6H2O, FeCl3.6H2O and NaOH as precursor and using NaCI as a dispersant to synthesize high surface area CoFe2O4 nanoparticles, has been investigated. ...A novel salt-assisted low temperature solid state method using CoCl2.6H2O, FeCl3.6H2O and NaOH as precursor and using NaCI as a dispersant to synthesize high surface area CoFe2O4 nanoparticles, has been investigated. The effects of the molar ratio of added salt and calcination temperature on the characteristics of the products were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Brunauer, Emmett and Teller (BET) surface area analysis. Results showed that the introduction of leachable inert inorganic salt as a hard agglomeration inhibitor in the mixture precursor led to the formation of high dispersive CoFe2O4 nanoparticles; and the increase in specific surface area from 28.28 to 73.97 m^2/g, and the saturation magnetization is 84.6 emu/g.展开更多
Pr^(3+)-activated barium tungsto-molybdate solid solution phosphor Ba(Mo_(1-z)W_z)O_4:Pr^(3+)is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated oct...Pr^(3+)-activated barium tungsto-molybdate solid solution phosphor Ba(Mo_(1-z)W_z)O_4:Pr^(3+)is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr^(3+)-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO_4] for [MoO_4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo_(1-z)W_z)O_4:Pr^(3+)owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity,well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white lightemitting diodes(LEDs).展开更多
Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are propos...Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety.展开更多
1 Introduction It has been noticed that salts link the Earth’s spheres(Zheng,2007),and rich information must have been recorded by salts on the geological processes they involved in.Salts have been found on Mars,Euro...1 Introduction It has been noticed that salts link the Earth’s spheres(Zheng,2007),and rich information must have been recorded by salts on the geological processes they involved in.Salts have been found on Mars,Europa,Enceladus,and salts might be common on planets(Zheng et al.,2013).Thus salts can be potential indicators for studying the geological history of planets.From the beginning of the 21st century,much new展开更多
A relationship between electrical conductivity (EC) and total dissolved solids (TDS) was tested for solutions of same salinity levels with respect to different artificial salts with their combinations. Results showed ...A relationship between electrical conductivity (EC) and total dissolved solids (TDS) was tested for solutions of same salinity levels with respect to different artificial salts with their combinations. Results showed remarkable jumping at the order of the artificial salt sequence specially that of the magnesium type. A computer model is designed with an input of EC and TDS. The output will be the possible prevailing artificial salts. The accuracy of the model was tested by using the groundwater data of Safwan-Zubair area south of Iraq and it proved to be significant at 95% matching. The 5% unmatched results are due to the possibility of having more than one type of prevailing salt.展开更多
基金supported by the SinoProbe Project (SinoProbe-2-6)the National Natural Science Foundation of China (41073024 and 40872048)
文摘Unusual polyphase inclusions of K-feldspar+quartz+titanite+solid salt and K-feldspar+albite+quartz+epidote with textures similar to the other K-feldspar+quartz inclusions were found in omphacite grains from the Sulu ultrahigh pressure (UHP) eclogites. One of these inclusions contain square to round solid salt inclusions of KCl-NaCl composition. Such a mineral assemblage within K-feldspar-bearing inclusions hosted by UHP metamorphic phases suggests that (1) potassium granitic melts enriched in Cl components were presented during UHP metamorphism or at the early stage of rapid exhumation of deeply subducted continental slab; (2) they were resulted from reactions between the incoming granitic melts and quartz (or coesite); and (3) solid salt inclusions of NaCl-KCl were derived from dehydration and desiccation of Cl-bearing melts. Our new observations further demonstrate that during the tectonic evolution of UHP rocks, fertile components within deeply subducted continental materials could undergo partial melting, leading to the formation of Cl-bearing potassium granitic melts and substantial migration of fluid-conservative elements (e.g. Ti, Hf) within the UHP slab.
文摘Analyzes on solid potassium mineral reserves calculation methods and existing problems of chaerhan salt lake,t with many parameters comparison solid potassium mineral reserves calculation results are reliable,the
基金supported by the National Natural Sci-ence Foundation of China under grant No. 50602024the Youth Foundation of North University of China
文摘A novel salt-assisted low temperature solid state method using CoCl2.6H2O, FeCl3.6H2O and NaOH as precursor and using NaCI as a dispersant to synthesize high surface area CoFe2O4 nanoparticles, has been investigated. The effects of the molar ratio of added salt and calcination temperature on the characteristics of the products were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Brunauer, Emmett and Teller (BET) surface area analysis. Results showed that the introduction of leachable inert inorganic salt as a hard agglomeration inhibitor in the mixture precursor led to the formation of high dispersive CoFe2O4 nanoparticles; and the increase in specific surface area from 28.28 to 73.97 m^2/g, and the saturation magnetization is 84.6 emu/g.
基金Project supported by the Construction Fund for Science and Technology Innovation Group from Jiangsu University of Technology,Chinathe Key Laboratory of Atmospheric Environment Monitoring and Pollution Control,China(Grant No.KHK1409)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe National Natural Science Foundation of China(Grant No.21373103)
文摘Pr^(3+)-activated barium tungsto-molybdate solid solution phosphor Ba(Mo_(1-z)W_z)O_4:Pr^(3+)is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr^(3+)-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO_4] for [MoO_4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo_(1-z)W_z)O_4:Pr^(3+)owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity,well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white lightemitting diodes(LEDs).
基金supported by the National Key Basic Research Program of China(Grant No.2014CB932400)the National Natural Science Foundation of China(Grant No.51772167)+1 种基金the China Postdoctoral Science Foundation(Grant No.2016M591169)the Shenzhen Municipal Basic Research Project,China(Grant No.JCYJ20170412171311288)
文摘Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety.
文摘1 Introduction It has been noticed that salts link the Earth’s spheres(Zheng,2007),and rich information must have been recorded by salts on the geological processes they involved in.Salts have been found on Mars,Europa,Enceladus,and salts might be common on planets(Zheng et al.,2013).Thus salts can be potential indicators for studying the geological history of planets.From the beginning of the 21st century,much new
文摘A relationship between electrical conductivity (EC) and total dissolved solids (TDS) was tested for solutions of same salinity levels with respect to different artificial salts with their combinations. Results showed remarkable jumping at the order of the artificial salt sequence specially that of the magnesium type. A computer model is designed with an input of EC and TDS. The output will be the possible prevailing artificial salts. The accuracy of the model was tested by using the groundwater data of Safwan-Zubair area south of Iraq and it proved to be significant at 95% matching. The 5% unmatched results are due to the possibility of having more than one type of prevailing salt.