Aluminum(Al) particles are commonly added to energetic materials including propellants,explosives and pyrotechnics to increase the overall energy density of the composite,but aluminum agglomeration on the combustion s...Aluminum(Al) particles are commonly added to energetic materials including propellants,explosives and pyrotechnics to increase the overall energy density of the composite,but aluminum agglomeration on the combustion surface may lower the combustion efficiency of propellants,resulting in a loss in twophase flow.Therefore,it is necessary to understand the agglomeration mechanism of aluminum particles on the combustion surface.In this paper,a high-pressure sealed combustion chamber is constructed,and high-speed camera is used to capture the whole process of aluminum accumulation,aggregation and agglomeration on the combustion surface,and the secondary agglomeration process near the combustion surface.The microscopic morphology and chemical composition of the condensed combustion products(CCPs) are then studied by using scanning electron microscopy coupled with energy dispersive(SEM-EDS) method.Results show that there are three main types of condensed combustion products:small smoke oxide particles oxidized by aluminum vapor,usually less than 1 μm;typical agglomerates formed by the combustion of aluminum agglomerates;carbonized agglomerates that are widely distributed,usually formed by irregular movements of aluminum agglomerates.The particle size of condensed combustion products is measured by laser particle size meter.As the pressure increases from 0.5 MPa to 1.0 MPa in nitrogen,the mass average particle size of aluminum agglomerates decreases by 49.7%.As the ambient gas is changed from 0.5 MPa nitrogen to 0.5 MPa air,the mass average particle size of aluminum agglomerates decreases by 67.3%.Results show that as the ambient pressure increases,the higher oxygen content can improve combustion efficiency and reduce the average agglomeration size of aluminum particles.展开更多
Sand production is one of the main obstacles restricting gas extraction efficiency and safety from marine natural gas hydrate(NGH)reservoirs.Particle migration within the NGH reservoir dominates sand production behavi...Sand production is one of the main obstacles restricting gas extraction efficiency and safety from marine natural gas hydrate(NGH)reservoirs.Particle migration within the NGH reservoir dominates sand production behaviors,while their relationships were rarely reported,severely constrains quantitative evaluation of sand production risks.This paper reports the optical observations of solid particle migration and production from micrometer to mesoscopic scales conditioned to gravel packing during depressurization-induced NGH dissociation for the first time.Theoretical evolutionary modes of sand migration are established based on experimental observations,and its implications on field NGH are comprehensively discussed.Five particle migration regimes of local borehole failure,continuous collapse,wormhole expansion,extensive slow deformation,and pore-wall fluidization are proved to occur during depressurization.The types of particle migration regimes and their transmission modes during depressurization are predominantly determined by initial hydrate saturation.In contrast,the depressurization mainly dominates the transmission rate of the particle migration regimes.Furthermore,both the cumulative mass and the medium grain size of the produced sand decrease linearly with increasing initial methane hydrate(MH)saturation.Discontinuous gas bubble emission,expansion,and explosion during MH dissociation delay sand migration into the wellbore.At the same time,continuous water flow is a requirement for sand production during hydrate dissociation by depressurization.The experiments enlighten us that a constitutive model that can illustrate visible particle migration regimes and their transmission modes is urgently needed to bridge numerical simulation and field applications.Optimizing wellbore layout positions or special reservoir treatment shall be important for mitigating sand production tendency during NGH exploitation.展开更多
Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolu...Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolution and benzaldehyde production by dehydrogenation of benzyl alcohol over Nidecorated Zn_(0.5)Cd_(0.5)S solid solution under visible light. The photocatalytic system shows an excellent hydrogen production rate of 666.3 μmol h^(-1) with high stability. The optimal apparent quantum yield of52.5% is obtained at 420 nm. This noble-metal-free photocatalytic system displays much higher activity than pure Zn_(0.5)Cd_(0.5)S and Pt-loaded Zn_(0.5)Cd_(0.5)S solid solution. Further studies reveal that the metallic Ni nanocrystals play an important role in accelerating the separation of photogenerated charge carriers and the subsequent cleavage of α-C–H bond during dehydrogenation of benzyl alcohol.展开更多
Biodiesel industrial production based on a solid base catalyst in a fixed-bed was simulated. The lab and bench scale experiments were carded out effectively, in which the kinetic model is established and it can descri...Biodiesel industrial production based on a solid base catalyst in a fixed-bed was simulated. The lab and bench scale experiments were carded out effectively, in which the kinetic model is established and it can describe the transesterification reaction well. The Antoine equation of biodiesel is regressed with the vapor-liquid data cited of literature. The non-random two liquid (NRTL) model is applied to describe the system of fatty acid methyl ester (FAME), methanol and glycerol and parameters are obtained. The Ternary phase map is obtained from Aspen Plus via the liquid-liquid equilibrium (LLE) data. In order to describe the production in a fixed-bed performs in industrial scale after being magnified 1 000 times, the Aspen Plus simulation is employed, where two flowsheets are simulated to predict material and energy consumption. The simulation results prove that at least 350. 42 kW energy consumption can be reduced per hour to produce per ton biodiesel compared with data reported in previous references.展开更多
The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resona...The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resonance(NMR).The results indicated that PESA bonds Ca^2+ions in pore solution to prevent portlandite formation,and also combines with Ca^2+ions on the surface of silicate minerals to prolong the control time of phase boundary reaction process,leading to the retardation of silicate mineral hydration.Meanwhile,the interlayer Ca^2+ions in Jennite-like structure bridging PESA and C-S-H gels prevent silicate tetrahedron and aluminum tetrahedron from occupying the sites of bridging silicate tetrahedron,which causes the main existence of dimer in C-S-H structure,deceases the degree of Al^3+substituting for Si^4+and promotes the transformation from 4-coordination aluminum to 6-coordination aluminum.Furthermore,the-Ca^+chelating group from reacting PESA with Ca^2+ions combines easily with SO4^2-ions,resulting in transformation from ettringite,AFm to TAH(Third aluminum hydrate).However,with the higher addition of PESA,it will bridge the excess PESA by Ca^2+ions to form a new chelate with ladder-shaped double chains structure,which not only reduces the amount of PESA bonding Ca^2+ions,but also decreases its solidifying capability for SO4^2-ions,leading to the transformation from TAH to AFm or ettringite.Meanwhile,at later hydration,the inhibition effect of PESA on cement hydration is weakened,and the transformation degree from TAH to AFm is higher than that to AFt with the addition of PESA.展开更多
Production of fines together with reservoir fluid is called solid production. It varies from a few grams or less per ton of reservoir fluid posing only minor problems, to catastrophic amount possibly leading to erosio...Production of fines together with reservoir fluid is called solid production. It varies from a few grams or less per ton of reservoir fluid posing only minor problems, to catastrophic amount possibly leading to erosion and complete filling of the borehole. This paper assesses solid production potential in a carbonate gas reservoir located in the south of Iran. Petrophysical logs obtained from the vertical well were employed to construct mechanical earth model. Then, two failure criteria, i.e. Mohre Coulomb and Mogi-Coulomb,were used to investigate the potential of solid production of the well in the initial and depleted conditions of the reservoir. Using these two criteria, we estimated critical collapse pressure and compared them to the reservoir pressure. Solid production occurs if collapse pressure is greater than pore pressure. Results indicate that the two failure criteria show different estimations of solid production potential of the studied reservoir. Mohre Coulomb failure criterion estimated solid production in both initial and depleted conditions, where Mogi-Coulomb criterion predicted no solid production in the initial condition of reservoir. Based on Mogi-Coulomb criterion, the well may not require completion solutions like perforated liner, until at least 60% of reservoir pressure was depleted which leads to decrease in operation cost and time.展开更多
In view of application characteristics of Solid Thinking Evolve in product modeling design, and the practical design of cosmetics packaging, this paper introduced the unique Construction TreeTM, fast, convenient and e...In view of application characteristics of Solid Thinking Evolve in product modeling design, and the practical design of cosmetics packaging, this paper introduced the unique Construction TreeTM, fast, convenient and easy features of Solid Thinking Evolve, and its application prospects in product development.展开更多
Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction p...Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction period.In order to drill a horizontal well in the shallow hydrate reservoir in the deep water,the suction anchor wellhead assembly is employed to undertake the main vertical bearing capacity in the second round of hydrate trial production project,so as to reduce the conductor running depth and heighten the kick-off point position.However,the deformation law of the deep-water suction anchor wellhead assembly under the moving load of the riser is not clear,and it is necessary to understand the lateral bearing characteristics to guide the design of its structural scheme.Based on 3D solid finite element method,the solid finite element model of the suction anchor wellhead assembly is established.In the model,the seabed soil is divided into seven layers,the contact between the wellhead assembly and the soil is simulated,and the vertical load and bending moment are applied to the wellhead node to simulate the riser movement when working in the deep water.The lateral bearing stability of conventional wellhead assembly and suction anchor wellhead assembly under the influence of wellhead load is discussed.The analysis results show that the bending moment is the main factor affecting the lateral deformation of the wellhead string;the anti-bending performance from increasing the outer conductor diameter is better than that from increasing the conductor wall thickness;for the subsea wellhead,the suction anchor obviously improves the lateral bearing capacity and reduces the lateral deformation.The conduct of the suction anchor wellhead assembly still needs to be lowered to a certain depth that below the maximum disturbed depth to ensure the lateral bearing stability,Thus,a method for the minimum conductor running depth for the suction anchor wellhead assembly is developed.The field implementations show that compared with the first round of hydrate trial production project,the conductor running depth is increased by 9.42 m,and there is no risk of wellhead overturning during the trial production.The method for determining the minimum conductor running depth in this paper is feasible and will still play an important role in the subsequent hydrate exploration and development.展开更多
使用通过型固相萃取小柱PRi ME HLB处理水产品样品,建立了一种水产品中17种磺胺类药物的简单、快速的筛选分析方法。水产品样品经80%乙腈水溶液(含0.2%甲酸)提取,过PRi ME HLB固相萃取柱净化,浓缩后经C_(18)色谱柱梯度洗脱分离,超高效...使用通过型固相萃取小柱PRi ME HLB处理水产品样品,建立了一种水产品中17种磺胺类药物的简单、快速的筛选分析方法。水产品样品经80%乙腈水溶液(含0.2%甲酸)提取,过PRi ME HLB固相萃取柱净化,浓缩后经C_(18)色谱柱梯度洗脱分离,超高效液相色谱-三重四极杆质谱系统进行定量分析。结果表明,17种磺胺类药物在1.0~50.0 ng·mL^(-1)线性关系良好,相关系数R^(2)>0.99;该方法检出限为2μg·kg^(-1);添加浓度为10μg·kg^(-1)时方法回收率在71.3%~118.4%,RSD值均小于20%。展开更多
从某铀矿山周边土壤中富集分离出一株硫酸盐还原菌A1_(S)XC21Q,研究了该菌株在不同pH、温度、SO_(4)^(2-)浓度下的脱硫和固铀性能,及其固铀产物的稳定性。结果表明:pH升高有利于该菌对SO_(4)^(2-)和铀的去除,初始pH为5.5~7.0条件下,SO_(...从某铀矿山周边土壤中富集分离出一株硫酸盐还原菌A1_(S)XC21Q,研究了该菌株在不同pH、温度、SO_(4)^(2-)浓度下的脱硫和固铀性能,及其固铀产物的稳定性。结果表明:pH升高有利于该菌对SO_(4)^(2-)和铀的去除,初始pH为5.5~7.0条件下,SO_(4)^(2-)和铀的去除率均可达到95%以上;初始SO_(4)^(2-)浓度增加会降低菌株对SO_(4)^(2-)和铀的去除率,但在SO_(4)^(2-)浓度为2000 mg/L条件下,SO_(4)^(2-)和铀的去除率仍可达到75.42%和50.57%;温度升高可显著加速SO_(4)^(2-)和铀的去除,25~35℃条件下,SO_(4)^(2-)和铀的去除率均达到95%左右;A1 S XC21Q菌株可将富集于其表面的铀转移到细胞内部并形成多个“核状”磷酸铀酰络合物,形成的固铀产物稳定。从A1 S XC21Q菌脱硫固铀效果及其固铀产物稳定性来看,该菌有望用于后续酸法地浸铀矿山退役采区地下水生物修复技术试验研究中。展开更多
基金supported by the National Natural Science Foundation of China (Grant No.52006099)the Fundamental Research Funds of the Central Universities (Grant No.30920021102,No.309181B8812)the Six Talent Peaks Project of Jiangsu Province of China (Grant No.2016-HKHT-017)。
文摘Aluminum(Al) particles are commonly added to energetic materials including propellants,explosives and pyrotechnics to increase the overall energy density of the composite,but aluminum agglomeration on the combustion surface may lower the combustion efficiency of propellants,resulting in a loss in twophase flow.Therefore,it is necessary to understand the agglomeration mechanism of aluminum particles on the combustion surface.In this paper,a high-pressure sealed combustion chamber is constructed,and high-speed camera is used to capture the whole process of aluminum accumulation,aggregation and agglomeration on the combustion surface,and the secondary agglomeration process near the combustion surface.The microscopic morphology and chemical composition of the condensed combustion products(CCPs) are then studied by using scanning electron microscopy coupled with energy dispersive(SEM-EDS) method.Results show that there are three main types of condensed combustion products:small smoke oxide particles oxidized by aluminum vapor,usually less than 1 μm;typical agglomerates formed by the combustion of aluminum agglomerates;carbonized agglomerates that are widely distributed,usually formed by irregular movements of aluminum agglomerates.The particle size of condensed combustion products is measured by laser particle size meter.As the pressure increases from 0.5 MPa to 1.0 MPa in nitrogen,the mass average particle size of aluminum agglomerates decreases by 49.7%.As the ambient gas is changed from 0.5 MPa nitrogen to 0.5 MPa air,the mass average particle size of aluminum agglomerates decreases by 67.3%.Results show that as the ambient pressure increases,the higher oxygen content can improve combustion efficiency and reduce the average agglomeration size of aluminum particles.
基金supported by the Laoshan Laboratory(No.LSKJ LSKJ202203506)the Taishan Scholars Program,and the National Natural Science Foundation of China(Grant No.41976074).
文摘Sand production is one of the main obstacles restricting gas extraction efficiency and safety from marine natural gas hydrate(NGH)reservoirs.Particle migration within the NGH reservoir dominates sand production behaviors,while their relationships were rarely reported,severely constrains quantitative evaluation of sand production risks.This paper reports the optical observations of solid particle migration and production from micrometer to mesoscopic scales conditioned to gravel packing during depressurization-induced NGH dissociation for the first time.Theoretical evolutionary modes of sand migration are established based on experimental observations,and its implications on field NGH are comprehensively discussed.Five particle migration regimes of local borehole failure,continuous collapse,wormhole expansion,extensive slow deformation,and pore-wall fluidization are proved to occur during depressurization.The types of particle migration regimes and their transmission modes during depressurization are predominantly determined by initial hydrate saturation.In contrast,the depressurization mainly dominates the transmission rate of the particle migration regimes.Furthermore,both the cumulative mass and the medium grain size of the produced sand decrease linearly with increasing initial methane hydrate(MH)saturation.Discontinuous gas bubble emission,expansion,and explosion during MH dissociation delay sand migration into the wellbore.At the same time,continuous water flow is a requirement for sand production during hydrate dissociation by depressurization.The experiments enlighten us that a constitutive model that can illustrate visible particle migration regimes and their transmission modes is urgently needed to bridge numerical simulation and field applications.Optimizing wellbore layout positions or special reservoir treatment shall be important for mitigating sand production tendency during NGH exploitation.
基金financially supported by the National Key Research and Development Program of China(2017YFA0402800)the National Natural Science Foundation of China(grant nos.51772285,21473170)the Fundamental Research Funds for the Central Universities
文摘Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolution and benzaldehyde production by dehydrogenation of benzyl alcohol over Nidecorated Zn_(0.5)Cd_(0.5)S solid solution under visible light. The photocatalytic system shows an excellent hydrogen production rate of 666.3 μmol h^(-1) with high stability. The optimal apparent quantum yield of52.5% is obtained at 420 nm. This noble-metal-free photocatalytic system displays much higher activity than pure Zn_(0.5)Cd_(0.5)S and Pt-loaded Zn_(0.5)Cd_(0.5)S solid solution. Further studies reveal that the metallic Ni nanocrystals play an important role in accelerating the separation of photogenerated charge carriers and the subsequent cleavage of α-C–H bond during dehydrogenation of benzyl alcohol.
基金The National Basic Research Program of China(973Program)(No.2010CB732206)the National Natural Science Foundation of China(No.21076044,21276050)
文摘Biodiesel industrial production based on a solid base catalyst in a fixed-bed was simulated. The lab and bench scale experiments were carded out effectively, in which the kinetic model is established and it can describe the transesterification reaction well. The Antoine equation of biodiesel is regressed with the vapor-liquid data cited of literature. The non-random two liquid (NRTL) model is applied to describe the system of fatty acid methyl ester (FAME), methanol and glycerol and parameters are obtained. The Ternary phase map is obtained from Aspen Plus via the liquid-liquid equilibrium (LLE) data. In order to describe the production in a fixed-bed performs in industrial scale after being magnified 1 000 times, the Aspen Plus simulation is employed, where two flowsheets are simulated to predict material and energy consumption. The simulation results prove that at least 350. 42 kW energy consumption can be reduced per hour to produce per ton biodiesel compared with data reported in previous references.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2015CB655101)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(No.DQZDJJ201504)+2 种基金State Key Laboratory of High Performance Civil Engineering Materials(No.2015CEM006)Natural Science Foundation of Hebei Province(No.E2016209283)Science and Technology Program of Hebei Province(No.16273706D)
文摘The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resonance(NMR).The results indicated that PESA bonds Ca^2+ions in pore solution to prevent portlandite formation,and also combines with Ca^2+ions on the surface of silicate minerals to prolong the control time of phase boundary reaction process,leading to the retardation of silicate mineral hydration.Meanwhile,the interlayer Ca^2+ions in Jennite-like structure bridging PESA and C-S-H gels prevent silicate tetrahedron and aluminum tetrahedron from occupying the sites of bridging silicate tetrahedron,which causes the main existence of dimer in C-S-H structure,deceases the degree of Al^3+substituting for Si^4+and promotes the transformation from 4-coordination aluminum to 6-coordination aluminum.Furthermore,the-Ca^+chelating group from reacting PESA with Ca^2+ions combines easily with SO4^2-ions,resulting in transformation from ettringite,AFm to TAH(Third aluminum hydrate).However,with the higher addition of PESA,it will bridge the excess PESA by Ca^2+ions to form a new chelate with ladder-shaped double chains structure,which not only reduces the amount of PESA bonding Ca^2+ions,but also decreases its solidifying capability for SO4^2-ions,leading to the transformation from TAH to AFm or ettringite.Meanwhile,at later hydration,the inhibition effect of PESA on cement hydration is weakened,and the transformation degree from TAH to AFm is higher than that to AFt with the addition of PESA.
文摘Production of fines together with reservoir fluid is called solid production. It varies from a few grams or less per ton of reservoir fluid posing only minor problems, to catastrophic amount possibly leading to erosion and complete filling of the borehole. This paper assesses solid production potential in a carbonate gas reservoir located in the south of Iran. Petrophysical logs obtained from the vertical well were employed to construct mechanical earth model. Then, two failure criteria, i.e. Mohre Coulomb and Mogi-Coulomb,were used to investigate the potential of solid production of the well in the initial and depleted conditions of the reservoir. Using these two criteria, we estimated critical collapse pressure and compared them to the reservoir pressure. Solid production occurs if collapse pressure is greater than pore pressure. Results indicate that the two failure criteria show different estimations of solid production potential of the studied reservoir. Mohre Coulomb failure criterion estimated solid production in both initial and depleted conditions, where Mogi-Coulomb criterion predicted no solid production in the initial condition of reservoir. Based on Mogi-Coulomb criterion, the well may not require completion solutions like perforated liner, until at least 60% of reservoir pressure was depleted which leads to decrease in operation cost and time.
文摘In view of application characteristics of Solid Thinking Evolve in product modeling design, and the practical design of cosmetics packaging, this paper introduced the unique Construction TreeTM, fast, convenient and easy features of Solid Thinking Evolve, and its application prospects in product development.
基金This research was jointly supported by the National Key R&D Program of China(2021YFC2800801)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0501)+3 种基金the Guangzhou Basic and Applied Basic Foundation(202102020611)the project of Guangzhou Marine Geological Survey of the China Geology Survey(DD20221700)the Key-Area Research and Development Program of Guangdong Province(2020B1111030003)the High-tech Ship Research Project of the Ministry of Industry and Information Technology(CJ05N20).
文摘Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction period.In order to drill a horizontal well in the shallow hydrate reservoir in the deep water,the suction anchor wellhead assembly is employed to undertake the main vertical bearing capacity in the second round of hydrate trial production project,so as to reduce the conductor running depth and heighten the kick-off point position.However,the deformation law of the deep-water suction anchor wellhead assembly under the moving load of the riser is not clear,and it is necessary to understand the lateral bearing characteristics to guide the design of its structural scheme.Based on 3D solid finite element method,the solid finite element model of the suction anchor wellhead assembly is established.In the model,the seabed soil is divided into seven layers,the contact between the wellhead assembly and the soil is simulated,and the vertical load and bending moment are applied to the wellhead node to simulate the riser movement when working in the deep water.The lateral bearing stability of conventional wellhead assembly and suction anchor wellhead assembly under the influence of wellhead load is discussed.The analysis results show that the bending moment is the main factor affecting the lateral deformation of the wellhead string;the anti-bending performance from increasing the outer conductor diameter is better than that from increasing the conductor wall thickness;for the subsea wellhead,the suction anchor obviously improves the lateral bearing capacity and reduces the lateral deformation.The conduct of the suction anchor wellhead assembly still needs to be lowered to a certain depth that below the maximum disturbed depth to ensure the lateral bearing stability,Thus,a method for the minimum conductor running depth for the suction anchor wellhead assembly is developed.The field implementations show that compared with the first round of hydrate trial production project,the conductor running depth is increased by 9.42 m,and there is no risk of wellhead overturning during the trial production.The method for determining the minimum conductor running depth in this paper is feasible and will still play an important role in the subsequent hydrate exploration and development.
文摘使用通过型固相萃取小柱PRi ME HLB处理水产品样品,建立了一种水产品中17种磺胺类药物的简单、快速的筛选分析方法。水产品样品经80%乙腈水溶液(含0.2%甲酸)提取,过PRi ME HLB固相萃取柱净化,浓缩后经C_(18)色谱柱梯度洗脱分离,超高效液相色谱-三重四极杆质谱系统进行定量分析。结果表明,17种磺胺类药物在1.0~50.0 ng·mL^(-1)线性关系良好,相关系数R^(2)>0.99;该方法检出限为2μg·kg^(-1);添加浓度为10μg·kg^(-1)时方法回收率在71.3%~118.4%,RSD值均小于20%。
文摘从某铀矿山周边土壤中富集分离出一株硫酸盐还原菌A1_(S)XC21Q,研究了该菌株在不同pH、温度、SO_(4)^(2-)浓度下的脱硫和固铀性能,及其固铀产物的稳定性。结果表明:pH升高有利于该菌对SO_(4)^(2-)和铀的去除,初始pH为5.5~7.0条件下,SO_(4)^(2-)和铀的去除率均可达到95%以上;初始SO_(4)^(2-)浓度增加会降低菌株对SO_(4)^(2-)和铀的去除率,但在SO_(4)^(2-)浓度为2000 mg/L条件下,SO_(4)^(2-)和铀的去除率仍可达到75.42%和50.57%;温度升高可显著加速SO_(4)^(2-)和铀的去除,25~35℃条件下,SO_(4)^(2-)和铀的去除率均达到95%左右;A1 S XC21Q菌株可将富集于其表面的铀转移到细胞内部并形成多个“核状”磷酸铀酰络合物,形成的固铀产物稳定。从A1 S XC21Q菌脱硫固铀效果及其固铀产物稳定性来看,该菌有望用于后续酸法地浸铀矿山退役采区地下水生物修复技术试验研究中。