期刊文献+
共找到4,991篇文章
< 1 2 250 >
每页显示 20 50 100
Improvement effect of reversible solid solutions Mg_(2)Ni(Cu)/Mg_(2)Ni(Cu)H_(4)on hydrogen storage performance of MgH_(2)
1
作者 Yingyan Zhao Zhibing Liu +5 位作者 Jiangchuan Liu Yunfeng Zhu Jiguang Zhang Yana Liu Xiaohui Hu Liquan Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期197-208,共12页
The hydrogen absorption/desorption kinetic properties of MgH_(2)can be effectively enhanced by doping specific catalysts.In this work,MOFs-derived NiCu@C nanoparticles(~15 nm)with regular core-shell structure were suc... The hydrogen absorption/desorption kinetic properties of MgH_(2)can be effectively enhanced by doping specific catalysts.In this work,MOFs-derived NiCu@C nanoparticles(~15 nm)with regular core-shell structure were successfully prepared and introduced into MgH_(2)(denoted as MgH_(2)-NiCu@C).The onset and peak temperatures of hydrogen desorption of MgH_(2)-11 wt.%NiCu@C are 175.0℃and282.2℃,respectively.The apparent activation energy of dehydrogenated reaction is 77.2±4.5 kJ/mol for MgH_(2)-11 wt.%NiCu@C,which is lower than half of that of the as-milled MgH_(2).Moreover,MgH_(2)-11 wt.%NiCu@C displays great cyclic stability.The strengthening"hydrogen pumping"effect of reversible solid solutions Mg_(2)Ni(Cu)/Mg_(2)Ni(Cu)H_(4)is proposed to explain the remarkable improvement in hydrogen absorption/desorption kinetic properties of MgH_(2).This work offers a novel perspective for the design of bimetallic nanoparticles and beyond for application in hydrogen storage and other energy related fields. 展开更多
关键词 Magnesium hydride Reversible solid solution Core-shell nanoparticles Hydrogen storage performance
下载PDF
Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development 被引量:1
2
作者 Jiaqiang Li Hongtao Zhang +2 位作者 Jingtai Sun Huadong Fu Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期826-832,共7页
Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-... Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties. 展开更多
关键词 element substitution copper alloy solid solution strengthening microstructure and performance
下载PDF
Extending the solid solution range of sodium ferric pyrophosphate:Off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)as a novel cathode for sodium‐ion batteries 被引量:1
3
作者 Xiang jun Pu Kunran Yang +6 位作者 Zibing Pan Chunhua Song Yangyang Lai Renjie Li Zheng‐Long Xu Zhongxue Chen Yuliang Cao 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期128-139,共12页
Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on... Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs. 展开更多
关键词 extending solidsolution range off‐stoichiometric Na_(3)Fe_(2.5)(P_(2)O_(7))_(2) sodium‐ion batteries structure-function relationship
下载PDF
Effect of two-step solid solution on microstructure andδphase precipitation of Inconel 718 alloy
4
作者 Enyu Liu Qingshuang Ma +5 位作者 Xintong Li Aoxue Gao Jing Bai Liming Yu Qiuzhi Gao Huijun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2199-2207,共9页
Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step s... Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84. 展开更多
关键词 Inconel 718 alloy two-step solid solution treatment δphase γ″-δtransformation
下载PDF
Strongly Coupled Ag/Sn-SnO_(2)Nanosheets Toward CO_(2)Electroreduction to Pure HCOOH Solutions at Ampere‑Level Current
5
作者 Min Zhang Aihui Cao +5 位作者 Yucui Xiang Chaogang Ban Guang Han Junjie Ding Li‑Yong Gan Xiaoyuan Zhou 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期212-226,共15页
Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance... Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance electrocatalysts.Herein,we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn-SnO_(2) grains,designated as Ag/Sn-SnO_(2) nanosheets(NSs),which possess optimized electronic structure,high electrical conductivity,and more accessible sites.As a result,such a catalyst exhibits unprecedented catalytic performance toward CO_(2)-to-formate conversion with near-unity faradaic efficiency(≥90%),ultrahigh partial current density(2,000 mA cm^(−2)),and superior long-term stability(200 mA cm^(−2),200 h),surpassing the reported catalysts of CO_(2) electroreduction to formate.Additionally,in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn-SnO_(2)NSs not only promote the formation of*OCHO and alleviate the energy barriers of*OCHO to*HCOOH,but also impede the desorption of H*.Notably,the Ag/Sn-SnO_(2)NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce~0.12 M pure HCOOH solution at 100 mA cm^(−2)over 200 h.This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO_(2). 展开更多
关键词 Electrochemical CO_(2)reduction Coupled ag/Sn-SnO_(2)nanosheets Electronic structure Porous solid electrolyte PURE
下载PDF
Ti_(3)AlC_(2−y)N_(y) carbonitride MAX phase solid solutions with tunable mechanical,thermal,and electrical properties
6
作者 Weiwei Zhang Shibo Li +3 位作者 Shukai Fan Xuejin Zhang Xiachen Fan Guoping Bei 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第9期1473-1481,共9页
Changing the N content in the Ti_(3)AlC_(2−y)N_(y) MAX phase solid solutions allows for the fine-tuning of their properties.However,systematic studies on the synthesis and properties of Ti_(3)AlC_(2−y)N_(y) solid solu... Changing the N content in the Ti_(3)AlC_(2−y)N_(y) MAX phase solid solutions allows for the fine-tuning of their properties.However,systematic studies on the synthesis and properties of Ti_(3)AlC_(2−y)N_(y) solid solution bulks have not been reported thus far.Here,previously reported Ti_(3)AlC_(2−y)N_(y) solid solution bulks(y=0.3,0.5,0.8,and 1.0)were synthesized via hot pressing of their powder counterparts under optimized conditions.The prepared Ti_(3)AlC_(2−y)N_(y) bulks are dense and have a fine microstructure with grain sizes of 6–8μm.The influence of the N content on the mechanical properties,electrical conductivities,and coefficients of thermal expansion(CTEs)of the prepared Ti_(3)AlC_(2−y)N_(y) bulk materials was clarified.The flexural strength and Vickers hardness values increased with increasing N content,suggesting that solid solution strengthening effectively improved the mechanical properties of Ti_(3)AlC_(2−y)N_(y).Ti_(3)AlCN(y=1)had the highest Vickers hardness and flexural strength among the studied samples,reaching 5.54 GPa and 550 MPa,respectively.However,the electrical conductivity and CTEs of the Ti_(3)AlC_(2−y)N_(y) solid solutions decreased with increasing N content,from 8.93×10^(−6) to 7.69×10^(−6) K^(−1) and from 1.33×10^(6) to 0.95×10^(6) S/m,respectively.This work demonstrated the tunable properties of Ti_(3)AlC_(2−y)N_(y) solid solutions with varying N contents and widened the MAX phase family for fundamental studies and applications. 展开更多
关键词 MAX solid solutions Ti_(3)AlC_(2−y)N_(y) microstructure mechanical properties electrical conductivity thermal expansion
原文传递
Microstructure and Properties of Cu-Cr-Zr Alloy after Rapidly Solidified Aging and Solid Solution Aging 被引量:14
7
作者 Ping LIU Juanhua SU +1 位作者 Qiming DONG Hejun LI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第4期475-478,共4页
The structure and properties of Cu-Cr-Zr alloy were studied after rapidly solidified aging and solid solution aging.At the early stage of aging (500℃ for 15 rain), the hardness and the conductivity of the alloy rap... The structure and properties of Cu-Cr-Zr alloy were studied after rapidly solidified aging and solid solution aging.At the early stage of aging (500℃ for 15 rain), the hardness and the conductivity of the alloy rapidly solidified are 143 HV and 72% IACS, respectively. Under the same aging condition, the hardness and electrical conductivity of the alloy solid solution treated can reach 86 HV and 47% IACS, respectively. The microstructure was analyzed, and the grain size after rapid solidification is much smaller than that after solid solution treatment. By rapidly solidified aging the fine precipitates distribute inside the grains and along the grain boundary, while by solid solution aging there are large Cr particles along the grain boundary. 展开更多
关键词 Cu-Cr-Zr alloy PROPERTIES solid solution aging Rapidly solidified aging
下载PDF
Effects of solution treatment and aging process on microstructure refining of semi-solid slurry of wrought aluminum alloy 7A09 被引量:5
8
作者 WU Xin HAN Fei WANG Wei-wei 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期331-336,共6页
A new method was exploited using solution treatment and aging process as a pretreatment in preparing semi-solid slurry with fine microstructure before isothermal treatment of wrought aluminum alloy 7A09.Parameters of ... A new method was exploited using solution treatment and aging process as a pretreatment in preparing semi-solid slurry with fine microstructure before isothermal treatment of wrought aluminum alloy 7A09.Parameters of pretreatment were optimized by orthogonal experiment design and proper precursor was prepared.The evolution of microstructure of semi-solid slurry during isothermal treatment was analyzed and the mechanism of microstructure refining was discussed.The result of orthogonal experiment design shows that the optimum parameters are 462 ℃for solution temperature,40min for solution time,132 ℃for aging temperature and 14 h for aging time.Microstructure of isothermal treatment is fine,homogenous,with globular solid grains and a solid fraction between 50%and 70%,which is qualified for later semi-solid forming process.Mechanism of microstructure evolution includes the agglomeration ofα-phase and Ostwald ripening.Precipitations prepared by solution and aging treatment prevent the grains from coarsening and promote the grain ripening to globular shape. 展开更多
关键词 wrought aluminum alloy semi-solid slurry microstructure refining solution treatment aging
下载PDF
Effect of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi shape memory alloy 被引量:6
9
作者 江树勇 赵亚楠 +2 位作者 张艳秋 胡励 梁玉龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3658-3667,共10页
As-received nickel-titanium (NiTi) shape memory alloy with a nominal composition of Ni50.9Ti49.1 (mole fraction,%) was subjected to solution treatment at 1123 K for 2 h and subsequent aging for 2 h at 573 K, 723 K... As-received nickel-titanium (NiTi) shape memory alloy with a nominal composition of Ni50.9Ti49.1 (mole fraction,%) was subjected to solution treatment at 1123 K for 2 h and subsequent aging for 2 h at 573 K, 723 K and 873 K, respectively. The influence of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi alloy was systematically investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and compression test. Solution treatment contributes to eliminating the Ti2Ni phase in the as-received NiTi sample, in which the TiC phase is unable to be removed. Solution treatment leads to ordered domain of atomic arrangement in NiTi alloy. In all the aged NiTi samples, the Ni4Ti3 precipitates, the R phase and the B2 austenite coexist in the NiTi matrix at room temperature, while the martensitic twins can be observed in the NiTi samples aged at 873 K. In the NiTi samples aged at 573 and 723 K, the fine and dense Ni4Ti3 precipitates distribute uniformly in the NiTi matrix, and thus they are coherent with the B2 matrix. However, in the NiTi sample aged at 873 K, the Ni4Ti3 precipitates exhibit the very inhomogeneous size, and they are coherent, semi-coherent and incoherent with the B2 matrix. In the case of aging at 723 K, the NiTi sample exhibits the maximum yield strength, where the fine and homogeneous Ni4Ti3 precipitates act as the effective obstacles against the dislocation motion, which results in the maximum critical resolved shear stress for dislocation slip. 展开更多
关键词 NiTi alloy shape memory alloy microstructural evolution mechanical properties solution treatment aging
下载PDF
Tungsten combustion in impact initiated W-Al composite based on W(Al) super-saturated solid solution 被引量:1
10
作者 Kong-xun Zhao Xiao-hong Zhang +5 位作者 Xiao-ran Gu Yu Tang Shun Li Yi-cong Ye Li'an Zhu Shu-xin Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期112-120,共9页
Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into ... Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into W through mechanical alloying. XRD analysis shows that after 50 h of ball milling, the diffraction peak of Al completely disappears and W(Al60) super-saturated solid solution powder is obtained. Further observation by HAADF and HRTEM reveals that the W(Al60) super-saturated solid solution powder is a mixture of solid solution and amorphous phase. Based on the good thermal stability of W(Al60) alloy powder below 1000℃, W(Al60)-Al composite was synthesized by hot pressing process.Impact initiation experiments suggest that the W(Al60)-Al composite has excellent reaction characteristics, and multiple types of tungsten oxides are detected in the reaction products, showing that the modified W is combustible in air. Due to the combustion of tungsten, the energy release rate of the W(Al60)-Al composite at speed of 1362 m/s reaches 2.71 kJ/g. 展开更多
关键词 Tungsten combustion Reactive materials Super-saturated solid solution Shock-induced reactions WeAl composite
下载PDF
Quantifying Solid Solution Strengthening in Nickel-Based Superalloys via High-Throughput Experiment and Machine Learning
11
作者 Zihang Li Zexin Wang +6 位作者 Zi Wang Zijun Qin Feng Liu Liming Tan Xiaochao Jin Xueling Fan Lan Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1521-1538,共18页
Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and... Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and Labusch’s theories,while the model parameters are incorporated without fitting to experimental data of complex alloys.In thiswork,four diffusionmultiples consisting of multicomponent alloys and pure Niare prepared and characterized.The composition and microhardness of singleγphase regions in samples are used to quantify the SSS.Then,Fleischer’s and Labusch’s theories are examined based on high-throughput experiments,respectively.The fitted solid solution coefficients are obtained based on Labusch’s theory and experimental data,indicating higher accuracy.Furthermore,six machine learning algorithms are established,providing a more accurate prediction compared with traditional physical models and fitted physical models.The results show that the coupling of highthroughput experiments and machine learning has great potential in the field of performance prediction and alloy design. 展开更多
关键词 Multicomponent diffusion multiples solid solution strengthening strengthening models machine learning
下载PDF
Effect of solution treatment and artificial aging on microstructure and mechanical properties of Al-Cu alloy 被引量:14
12
作者 Jae-Ho JANG Dae-Geun NAM +1 位作者 Yong-Ho PARK Ik-Min PARK 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期631-635,共5页
In order to achieve good mechanical properties of Al-Cu alloys such as high strength and good toughness,precipitation hardening and artificial aging treatment were applied.As defined by the T6 heat treatment,the stand... In order to achieve good mechanical properties of Al-Cu alloys such as high strength and good toughness,precipitation hardening and artificial aging treatment were applied.As defined by the T6 heat treatment,the standard artificial aging treatment for Al-Cu alloy followed heat treatments of solution treatment at 510-530 ℃ for 2 h,quenching in water at 60 ℃ and then artificial aging at 160-190 ℃ for 2-8 h.The effects of solution treatment and artificial aging on the microstructure and mechanical properties of Al-Cu alloy were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),transmission electron microscopy(TEM) and tensile test.The results of solution treatment indicate that the mechanical properties of Al-Cu alloy increase and then decrease with the increase of solution temperature.This is because the residual phases dissolve gradually into the matrix,and the fraction of the precipitation and the size of the re-crystallized grain increased.Compared to the solution temperature,the solution holding time has less effect on the microstructure and the mechanical properties of Al-Cu alloy.The artificial aging treatments were conducted at 160-180 ℃ for 2-8 h.The results show that the ultimate tensile strength can be obtained at 180 ℃ for 8 h.Ultimate tensile strength increased with increasing time or temperature.Yield strength was found as the same as the ultimate tensile strength result. 展开更多
关键词 Al-Cu alloy solid solution treatment artificial aging MICROSTRUCTURE mechanical property
下载PDF
Effects of single and multi-stage solid solution treatments on microstructure and properties of as-extruded AA7055 helical profile 被引量:11
13
作者 Cun-sheng ZHANG Zhao-gang ZHANG +3 位作者 Ming-fu LIU En-cheng BAO Liang CHEN Guo-qun ZHAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期1885-1901,共17页
The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corro... The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corrosion resistance of the as-extruded 7055 aluminium alloy(AA7055)helical profile were investigated using differential scanning calorimetry(DSC),optical microscopy(OM),scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM).It was observed that EST and MST could promote the dissolution of the second-phase particles compared with the traditional SST,and the intergranular phases were distinctly discontinuously distributed after HTPP and MST.There was obvious difference in the main texture type and texture strength for the alloy after different solid solution treatments.HTPP could improve the corrosion resistance of the alloy by regulating the intergranular phases,but the mechanical properties were severely weakened.While the good corrosion resistance of the alloy could be obtained by MST without obvious strength loss.As a result,the MST is an ideal solid solution treatment scheme for AA7055. 展开更多
关键词 7055 aluminum alloy extruded profile solid solution treatment mechanical properties corrosion resistance
下载PDF
Multi-solute solid solution behavior and its effect on the properties of magnesium alloys 被引量:6
14
作者 Jun Wang Yuan Yuan +5 位作者 Tao Chen Liang Wu Xianhuan Chen Bin Jiang Jingfeng Wang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1786-1820,共35页
The low-density magnesium(Mg)alloys are attractive for the application in aerospace,transportation and other weight-saving-required fields.The mechanical properties and corrosion properties of Mg alloys are the key-pr... The low-density magnesium(Mg)alloys are attractive for the application in aerospace,transportation and other weight-saving-required fields.The mechanical properties and corrosion properties of Mg alloys are the key-property issues for the wide application.It is surprising to find that the solid solution of alloying elements in theα-Mg phase can have multi-effects on the properties of Mg alloys,e.g.,solid solution strengthening,solid solution corrosion-resistance-enhancing,etc.Additionally,the alloy design theory of"solid solution strengthening and ductilizing"proposed by Pan and co-workers has attracted extensive attentions.It is promising that by selected proper multi-alloying-elements(with optimal ratio)solid solutioned in theα-Mg phase,the comprehensive properties of Mg alloys can be synergistically improved.In this work,the solid solution behavior of Mg alloys and the followed solid solution property-enhancing effects were reviewed.The mechanisms proposed recently by researchers for these solid solution property-enhancing behaviors were presented,and the related calculations and predictions were also described.It is shown the demonstrations of the fundamentals for the solid solution property-enhancing of Mg alloys,especially from the atomic inter-reaction aspects,still require elaborated characterization work and calculation work.Additionally,it could be expected that the multi-solute in Mg alloys can bring many possibilities,or,in another saying,"cocktail effects".With understanding the multi-solute interaction behavior and the corresponded solid solution property-enhancing effects,the good balanced high-performance Mg alloys can be developed. 展开更多
关键词 Mg alloys solid solution STRENGTH DUCTILITY CORROSION-RESISTANCE
下载PDF
Hydrogen storage properties of magnesium hydride catalyzed by Ni-based solid solutions 被引量:5
15
作者 Jian ZHANG Liu HE +3 位作者 Yuan YAO Xiao-jie ZHOU Li-kun JIANG Ping PENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期604-617,共14页
The Ni−25%X(X=Fe,Co,Cu,molar fraction)solid solutions were prepared and then doped into MgH_(2) through high-energy ball milling.The initial dehydrogenation temperatures of MgH_(2)/Ni−25%X composites are all decreased... The Ni−25%X(X=Fe,Co,Cu,molar fraction)solid solutions were prepared and then doped into MgH_(2) through high-energy ball milling.The initial dehydrogenation temperatures of MgH_(2)/Ni−25%X composites are all decreased by about 90℃relative to the as-milled pristine MgH_(2).The Ni−25%Co solid solution exhibits the most excellent catalytic effect,and the milled MgH_(2)/Ni−25%Co composite can release 5.19 wt.%hydrogen within 10 min at 300℃,while the as-milled pristine MgH_(2) can only release 1.78 wt.%hydrogen.More importantly,the dehydrogenated MgH_(2)/Ni−25%Co composite can absorb 5.39 wt.%hydrogen at 275℃within 3 min.The superior hydrogen sorption kinetics of MgH_(2)/Ni−25%Co can be ascribed to the actual catalytic effect of in-situ formed Mg_(2)Ni(Co)compounds.First-principles calculations show that the hydrogen absorption/desorption energy barriers of Mg/MgH_(2) systems decrease significantly after doping with transition metal atoms,which interprets well the improved hydrogen sorption properties of MgH_(2) catalyzed by Ni-based solid solutions. 展开更多
关键词 MgH2 Ni-based solid solutions catalytic effect hydrogen storage properties first-principles calculations
下载PDF
Effect of solution plus aging heat treatment on microstructural evolution and mechanical properties of near-β titanium alloy 被引量:22
16
作者 Chuan WU Mei ZHAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期997-1006,共10页
The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show ... The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show that the volume fraction of the primary α(αp) phase decreases with the increase of solution temperature, and the length of the secondary α phase (αs) decreases while its width increases with the increase of aging temperature. Yield and tensile strengths decrease with the increase of solution temperature, while increase with the increase of aging temperature. A good balance of tensile strength and ductility of the alloy is obtained under solution of 800℃ for 2 h plus aging of 640℃ for 8 h, in which the tensile strength is 1434 MPa and the elongation is 7.7%. The coarsening αs phase makes crack propagation paths deflected and tortuous, which increases the crack propagation resistance and improves the ductility and fracture toughness. 展开更多
关键词 Ti.5Al.5Mo.5V.3Cr.1Zr titanium alloy hot treatment solution aging microstructural evolution mechanical properties fracture mechanism
下载PDF
Solution and aging behavior of precipitates in laser melting deposited V-5Cr-5Ti alloys 被引量:1
17
作者 CHAI Peng-tao WANG Ye +6 位作者 ZHOU Yu-zhao YANG Xiao-shan LI Jin-feng LIU Xue LE Guo-min HUANG Xue-fei YUE Guo-zong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1089-1099,共11页
V-5Cr-5Ti alloys have been fabricated using a laser melting deposition(LMD)additive manufacturing process,showing precipitates aggregated near the grain/dendrite boundaries.Since the mechanical properties of vanadium ... V-5Cr-5Ti alloys have been fabricated using a laser melting deposition(LMD)additive manufacturing process,showing precipitates aggregated near the grain/dendrite boundaries.Since the mechanical properties of vanadium alloys considerably depend on the precipitates,solution and aging treatments have been applied to eliminating the aggregations of the precipitates.The results show that as the solution temperature increases from 800 to 1560℃,the densities and the lengths of the precipitates are reduced,while the widths of the precipitates are increased.When the solution temperature reaches 1560℃,most impurity elements diffuse into the matrix and form into a nearly uniform supersaturated solid solution.Aging treatments have been applied to the 1560℃solution treated samples.It shows that as the aging temperature increases from 800 to 1200℃,the precipitate length increases,and the shapes of precipitates change from near-spherical to lath-like.Compared to 800 and 1200℃,aging at 1000℃results in the highest precipitate density.Compared to the LMD and solution-treated samples,the aged samples have the highest micro-hardness,due to the precipitation strengthening. 展开更多
关键词 vanadium alloy additive manufacturing PRECIPITATES solution and aging treatments
下载PDF
Enhanced strengthening by two-step progressive solution and aging treatment in AM50-4%(Zn,Y) magnesium alloy 被引量:1
18
作者 Shuai DAI Feng WANG +3 位作者 De-zhi MA Zhi WANG Zheng LIU Ping-li MAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第12期2419-2426,共8页
AM50-4%(Zn,Y)alloy with a Zn/Y mole ratio of6:1was subjected to thermal analysis,and the results were used for designing a two-step progressive solution treatment process.The effects of solution and aging treatments o... AM50-4%(Zn,Y)alloy with a Zn/Y mole ratio of6:1was subjected to thermal analysis,and the results were used for designing a two-step progressive solution treatment process.The effects of solution and aging treatments on the microstructure and mechanical properties of the AM50-4%(Zn,Y)alloy were investigated using OM,XRD,SEM/EDS,TEM,tensile test and hardness test.The experimental results demonstrated that the two-step progressive solution treatment could make theΦandβphases sufficiently dissolve into the matrix which possessed higher supersaturated degree of the dissolved solute compared with the one-step solution treatment.This resulted in a certain enhancement of the precipitation strengthening effect during the subsequent aging process.The precipitation of theФphase had a greater impact on the comprehensive mechanical properties of the alloy thanβphase precipitation when the aging treatment was performed at180℃.The peak aging strength of the AM50-4%(Zn,Y)alloy which was subjected to the two-step progressive solution treatment process(345℃for16h and375℃for6h)was obtained after the aging treatment at180℃for12h. 展开更多
关键词 AM50-4%(Zn Y) alloy thermal analysis solution aging treatment microstructure strengthening mechanism
下载PDF
Comparisons of species and coagulation effects of PFS solution and solid PFS from pyrite cinders 被引量:6
19
作者 郑雅杰 龚竹青 +1 位作者 刘立华 陈白珍 《中国有色金属学会会刊:英文版》 CSCD 2002年第5期983-986,共4页
Pyrite cinder is a kind of solid waste of sulfuric acid industry. After mixing pyrite cinders with sulfuric acid, ferric sulfate was obtained by heating, maturing, dissolving and filtrating. Suitable amounts of FeSO 4... Pyrite cinder is a kind of solid waste of sulfuric acid industry. After mixing pyrite cinders with sulfuric acid, ferric sulfate was obtained by heating, maturing, dissolving and filtrating. Suitable amounts of FeSO 4·7H 2O and NaClO 3 were added into ferric sulfate solution and polyferric sulfate(PFS) solution was produced. Solid PFS was made by concentrating and drying PFS solution. Time-dependent complex colorimetric tests were done while ferron agent reacted with Fe 3+ in the solution. The results show that the proportion of transitional low polymeric species and high polymeric species are increased after PFS solution is transferred into solid PFS. It was discovered by jar tests that solid PFS has very good coagulation effects relevant to the increase of transitional lower polymeric species. 展开更多
关键词 黄铁矿烧渣 多铁硫酸盐 凝固
下载PDF
GENERAL SOLUTION FOR THE COUPLED EQUATIONS OF TRANSVERSELY ISOTROPIC MAGNETOELECTRO-ELASTIC SOLIDS
20
作者 刘金喜 王祥琴 王彪 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第7期774-781,共8页
The coupling feature of transversely isotropic magnetoelectroelastic solids are governed by a system of five partial differential equations with respect to the elastic displacements, the electric potential and the mag... The coupling feature of transversely isotropic magnetoelectroelastic solids are governed by a system of five partial differential equations with respect to the elastic displacements, the electric potential and the magnetic potential. Based on the potential theory, the coupled equations are reduced to the five uncoupled generalized Laplace equations with respect to five potential functions. Further, the elastic fields and electromagnetic fields are expressed in terms of the potential functions. These expressions construct the general solution of transversely isotropic magnetoelectroelastic media. 展开更多
关键词 magnetoelectroelastic solids general solution potential function
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部