The electronic structure and thermoelectric(TE) properties of PbS_xTe_(1-x)(x = 0.25, 0.5, and 0.75) solid solution have been studied by combining the first-principles calculations and semi-classical Boltzmann t...The electronic structure and thermoelectric(TE) properties of PbS_xTe_(1-x)(x = 0.25, 0.5, and 0.75) solid solution have been studied by combining the first-principles calculations and semi-classical Boltzmann theory. The special quasirandom structure(SQS) method is used to model the solid solutions of PbS_xTe_(1-x), which can produce reasonable electronic structures with respect to experimental results. The maximum zT value can reach 1.67 for p-type PbS0.75Te0.25 and 1.30 for PbS0.5Te0.5 at 800 K, respectively. The performance of p-type PbS_xTe_(1-x) is superior to the n-type ones, mainly attributed to the higher effective mass of the carriers. The z T values for PbS_xTe_(1-x) solid solutions are higher than that of pure Pb Te and Pb S, in which the combination of low thermal conductivity and high power factor play important roles.展开更多
Anneal hardening has been one of the approaches to improve mechanical properties of solid solution alloys with the face-centered cubic(FCC) structure,whereby a considerable strengthening can be attained by annealing o...Anneal hardening has been one of the approaches to improve mechanical properties of solid solution alloys with the face-centered cubic(FCC) structure,whereby a considerable strengthening can be attained by annealing of cold-worked alloys below the recrystallization temperature(T_(rx)).Microscopically,this hardening effect has been ascribed to several mechanisms,i.e.solute segregation to defects(dislocation and stacking fault) and short-range chemical ordering,etc.However,none of these mechanisms can well explain the anneal hardening recently observed in phase-pure and coarse-grained FCC-structured high-entropy alloys(HEAs).Here we report the observations,using high-resolution electron channeling contrast imaging and transmission electron microscopy,of profuse and stable dislocation substructures in a cold-rolled CoCrFeMnNi HEA subject to an annealing below T_(rx).The dislocation substructures are observed to be thermally stable up to T_(rx),which could arise from the chemical complexity of the high-entropy system where certain elemental diffusion retardation occurs.The microstructure feature is markedly different from that of conventional dilute solid solution alloys,in which dislocation substructures gradually vanish by recovery during annealing,leading to a strength drop.Furthermore,dilute addition of 2 at.% Al leads to a reduction in both microhardness and yield strength of the cold-rolled and subsequently annealed(≤500℃) HEA.This Al induced softening effect,could be associated with the anisotropic formation of dislocation substructure,resulting from enhanced dislocation planar slip due to glide plane softening effect.These findings suggest that the strength of HEAs can be tailored through the anneal hardening effect from dislocation substructure strengthening.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11647010 and 11704020)the Higher Education and High-quality and World-class Universities(Grant No.PY201611)the Fund for Disciplines Construction from Beijing University of Chemical Technology(Grant No.XK1702)
文摘The electronic structure and thermoelectric(TE) properties of PbS_xTe_(1-x)(x = 0.25, 0.5, and 0.75) solid solution have been studied by combining the first-principles calculations and semi-classical Boltzmann theory. The special quasirandom structure(SQS) method is used to model the solid solutions of PbS_xTe_(1-x), which can produce reasonable electronic structures with respect to experimental results. The maximum zT value can reach 1.67 for p-type PbS0.75Te0.25 and 1.30 for PbS0.5Te0.5 at 800 K, respectively. The performance of p-type PbS_xTe_(1-x) is superior to the n-type ones, mainly attributed to the higher effective mass of the carriers. The z T values for PbS_xTe_(1-x) solid solutions are higher than that of pure Pb Te and Pb S, in which the combination of low thermal conductivity and high power factor play important roles.
基金financially supported by the National Natural Science Foundation of China (No. 52001120)the Fundamental Research Funds for the Central Universities (No. 531118010450)+10 种基金the Hundred Talent Program of Hunan Provincethe State Key Laboratory of Powder Metallurgy,Central South University,Changshathe State Key Laboratory of Advanced Metals and Materials(No. 2021-Z09)University of Science&Technology Beijing,Chinasupported by the National Natural Science Foundation of China (No. 51801060)supported by the Swedish Research Councilsupported by the National Science Foundation under Contract (No. DMR-1408722)sponsored by the Whiting School of EngineeringJohns Hopkins Universityfunded by the National Key Research and Development Program of China (No. 2016YFB0300801)the National NaturalScience Foundation of China (Nos. 51831004, 11427806, 51671082,51471067)。
文摘Anneal hardening has been one of the approaches to improve mechanical properties of solid solution alloys with the face-centered cubic(FCC) structure,whereby a considerable strengthening can be attained by annealing of cold-worked alloys below the recrystallization temperature(T_(rx)).Microscopically,this hardening effect has been ascribed to several mechanisms,i.e.solute segregation to defects(dislocation and stacking fault) and short-range chemical ordering,etc.However,none of these mechanisms can well explain the anneal hardening recently observed in phase-pure and coarse-grained FCC-structured high-entropy alloys(HEAs).Here we report the observations,using high-resolution electron channeling contrast imaging and transmission electron microscopy,of profuse and stable dislocation substructures in a cold-rolled CoCrFeMnNi HEA subject to an annealing below T_(rx).The dislocation substructures are observed to be thermally stable up to T_(rx),which could arise from the chemical complexity of the high-entropy system where certain elemental diffusion retardation occurs.The microstructure feature is markedly different from that of conventional dilute solid solution alloys,in which dislocation substructures gradually vanish by recovery during annealing,leading to a strength drop.Furthermore,dilute addition of 2 at.% Al leads to a reduction in both microhardness and yield strength of the cold-rolled and subsequently annealed(≤500℃) HEA.This Al induced softening effect,could be associated with the anisotropic formation of dislocation substructure,resulting from enhanced dislocation planar slip due to glide plane softening effect.These findings suggest that the strength of HEAs can be tailored through the anneal hardening effect from dislocation substructure strengthening.