Accumulative roll bonded (ARB) Copper Niobium (Cu-Nb) nano-lamellar composite (NLC) panels were friction stir welded (FSWed) to evaluate the ability to join panels while retaining the nano-lamellar structure. ...Accumulative roll bonded (ARB) Copper Niobium (Cu-Nb) nano-lamellar composite (NLC) panels were friction stir welded (FSWed) to evaluate the ability to join panels while retaining the nano-lamellar structure. During a single pass of the friction stir welding (FSW) process, the nano-lamellar structure of the parent material (PM) was retained but was observed to fragment into equiaxed grains during the second pass. FSW has been modeled as a severe deformation process in which the material is subjected to an instantaneous high shear strain rate followed by extreme shear strains. The loss of the nano-lamellar layers was attributed to the increased strain and longer time at temperature resulting from the second pass of the FSW process. Kinematic modeling was used to predict the global average shear strain and shear strain rates experienced by the ARB material during the FSW process. The results of this study indicate that through careful selection of FSW parameters, the nano-lamellar structure and its associated higher strength can be maintained using FSW to join ARB NLC panels.展开更多
The heterojunctions between metal and polymer have become the effective ways to produce the lighter,safer and more environmental friendly vehicles for the manufacturing fields of automotive and aerospace.The state-of-...The heterojunctions between metal and polymer have become the effective ways to produce the lighter,safer and more environmental friendly vehicles for the manufacturing fields of automotive and aerospace.The state-of-the-art frictionbased welding techniques are characterized by low peak temperature,severe plastic deformation,energy efficiency and nonpollution,which can simultaneously realize the mechanical and chemical bonding,improving mechanical performances.In this review,the current progress about friction-based welding techniques is summarized,containing technical development,welding tool design,microstructural characteristic,process optimization,surface modification and joining mechanism.The conclusions and prospects are presented,which focus on the practical implications for the manufacturing sectors and recommendations for further research and development.The purpose of this review is to elucidate the benefits of friction-based welding techniques so that these methods may be better exploited and industrialized.展开更多
基金supported by the Los Alamos National Laboratory Directed Research and Development (LDRD) project 20130764ECR
文摘Accumulative roll bonded (ARB) Copper Niobium (Cu-Nb) nano-lamellar composite (NLC) panels were friction stir welded (FSWed) to evaluate the ability to join panels while retaining the nano-lamellar structure. During a single pass of the friction stir welding (FSW) process, the nano-lamellar structure of the parent material (PM) was retained but was observed to fragment into equiaxed grains during the second pass. FSW has been modeled as a severe deformation process in which the material is subjected to an instantaneous high shear strain rate followed by extreme shear strains. The loss of the nano-lamellar layers was attributed to the increased strain and longer time at temperature resulting from the second pass of the FSW process. Kinematic modeling was used to predict the global average shear strain and shear strain rates experienced by the ARB material during the FSW process. The results of this study indicate that through careful selection of FSW parameters, the nano-lamellar structure and its associated higher strength can be maintained using FSW to join ARB NLC panels.
基金supported by the National Natural Science Foundation of China(Nos.52205350 and 52175301)the China Postdoctoral Science Foundation(Nos.2021M690820 and 2021T140151)and the Heilongjiang Postdoctoral Fund(LBH-Z20055).
文摘The heterojunctions between metal and polymer have become the effective ways to produce the lighter,safer and more environmental friendly vehicles for the manufacturing fields of automotive and aerospace.The state-of-the-art frictionbased welding techniques are characterized by low peak temperature,severe plastic deformation,energy efficiency and nonpollution,which can simultaneously realize the mechanical and chemical bonding,improving mechanical performances.In this review,the current progress about friction-based welding techniques is summarized,containing technical development,welding tool design,microstructural characteristic,process optimization,surface modification and joining mechanism.The conclusions and prospects are presented,which focus on the practical implications for the manufacturing sectors and recommendations for further research and development.The purpose of this review is to elucidate the benefits of friction-based welding techniques so that these methods may be better exploited and industrialized.