Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existen...Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existence of aromatic structure,heteroatom structure and fat structure in coal.MS(materials studio)software was used to optimize and construct a 3D molecular structure model of coal.A method for establishing a coal molecular structure model was formed,which was“determination of key structures in coal,construction of planar molecular structure model,and optimization of three-dimensional molecular structure model”.The structural differences were compared and analyzed.The results show that with the increase of coal rank,the dehydrogenation of cycloalkanes in coal is continuously enhanced,and the content of heteroatoms in the aromatic ring decreases.The heteroatoms and branch chains in the coal are reduced,and the structure is more orderly and tight.The stability of the structure is determined by theπ-πinteraction between the aromatic rings in the nonbonding energy EN.Key Stretching Energy The size of EB determines how tight the structure is.The research results provide a method and reference for the study of the molecular structure of medium and high coal ranks.展开更多
A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear reg...A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear regression,contained four descriptors solely extracted from the molecular structure of compounds. The statistical results of the final model show that R2= 0.982 4 and S=0.869 8 (where R is the correlation coefficient and S is the standard deviation). To test its predictive ability,the model was further used to predict the 13C NMR spectra of the carbinol carbon atoms of other nine compounds which were not included in the developed model. The average relative errors are 0.94% and 1.70%,respectively,for the training set and the predictive set. The model is statistically significant and shows good stability for data variation as tested by the leave-one-out (LOO) cross-validation. The comparison with other approaches also reveals good performance of this method.展开更多
近年来,生物质碳(biochar)作为新型吸附剂被广泛研究。但由于制备biochar的生物质原料和热解温度的不同,使biochar的结构和组成存在差异,从而影响其对污染物的吸附。目前关于biochar的结构和组成的研究还不够全面。因此,结合了能谱与光...近年来,生物质碳(biochar)作为新型吸附剂被广泛研究。但由于制备biochar的生物质原料和热解温度的不同,使biochar的结构和组成存在差异,从而影响其对污染物的吸附。目前关于biochar的结构和组成的研究还不够全面。因此,结合了能谱与光谱分析的手段,对biochar的结构和组成进行了深入的分析。选取木质类(柳树枝条)和草类(水稻秸秆)作为原料,分别在不同热解温度(300,450和600℃)下制得biochars,并对biochars样品进行元素分析、X射线光电子能谱分析(XPS)和固态13 C核磁共振(13 C NMR)研究,以阐明不同热解温度和生物质来源的biochars的结构和组成。结果显示:biochar的H/C,O/C和(O+N)/C的比值随着热解温度的升高而降低;草类biochar比木质类biochar具有更高的灰分含量和表面极性;木质类biochar的矿物主要分布在样品颗粒内部,其表面被有机质覆盖,而草类biochar部分矿物暴露在样品颗粒表面;13 C NMR显示低温制得的biochar主要由芳香碳、脂肪碳、羧基和羰基碳组成,高温制得的biochar主要由芳香碳组成,且低温制得biochars中,木质类biochars比草类biochars含有更高的木质素的残留碳结构,这是由于木质类biochars原材料中含有更高的木质素。展开更多
为明确颗粒有机碳在土壤固碳中的作用机制,对比研究了不同有机培肥土壤颗粒有机碳的结构差异。以单施化肥处理为对照,选择了四种有机物料进行定位培肥试验,利用^(13) C NMR和红外光谱技术对比分析不同有机培肥对土壤颗粒有机碳结构的影...为明确颗粒有机碳在土壤固碳中的作用机制,对比研究了不同有机培肥土壤颗粒有机碳的结构差异。以单施化肥处理为对照,选择了四种有机物料进行定位培肥试验,利用^(13) C NMR和红外光谱技术对比分析不同有机培肥对土壤颗粒有机碳结构的影响。结果表明:颗粒有机碳以脂肪碳和含氧基团为主,脂化度高于75%,含氧官能团含量高于50%;不同有机培肥对土壤颗粒有机碳结构的影响差异性显著,树叶培肥在提高颗粒有机碳芳香度的同时,亲水性也大幅度提高,比单施化肥处理(对照)提高了0.78%;短期内,牛粪、秸秆和树叶培肥均可提高土壤颗粒有机碳的芳香度,但从长远角度分析,牛粪和秸秆培肥更利于土壤颗粒有机碳的稳定,尤其是秸秆培肥,其颗粒有机碳的芳香度分别比对照和牛粪培肥高0.35%和0.11%,而亲水性远低于二者;红外光谱与核磁分析的结果基本一致,红外光谱可用于大量样品的颗粒有机碳结构初步筛选。展开更多
We have developed an open-source cross-platform software toolkit entitled ACCEPT-NMR (Automated Crystal Contact Extrapolation/Prediction Toolkit for NMR) as a helpful tool to automate many of the complex tasks require...We have developed an open-source cross-platform software toolkit entitled ACCEPT-NMR (Automated Crystal Contact Extrapolation/Prediction Toolkit for NMR) as a helpful tool to automate many of the complex tasks required to find and visualize crystal contacts in structures of biomolecules and biomolecular assemblies. This toolkit provides many powerful features geared toward NMR spectroscopy and related disciplines, such as isotopic labeling, advanced visualization options, and reporting tools. Using this software, we have undertaken a survey of available chemical shift data in the literature and deposited in the BMRB, and show that the mere presence of one or more crystal contacts to a residue confers an approximately 65% likelihood of significant chemical shift perturbations (relative to solution NMR chemical shifts). The presence of each additional crystal contact subsequently increases this probability, resulting in predictive accuracies in excess of 80% in many cases. Conversely, the presence of a significant experimental chemical shift perturbation indicates a >60% likelihood of finding one or more crystal contacts to a particular residue. Pinpointing sites likely to experience large CSPs is critical to mapping solution NMR chemical shifts onto solid-state NMR data as a basis for preliminary assignments, and can thus simplify the assignment process for complex biomolecules. Mapping observed CSPs onto the molecular structure, on the other hand, can indicate the presence of crystal interfaces where no crystal structure is available. Finally, by detecting sites critical to intermolecular interfaces, ACCEPT-NMR can help guide experimental approaches (e.g. isotopic labeling schemes) to detect and probe specific inter-subunit interactions.展开更多
目的比较Hestrin比色法(简称比色法)和核磁共振(nuclear magnetic resonance,NMR)法在检测A、C、Y、W135群脑膜炎球菌荚膜多糖氧乙酰基(O-Acetyl,OAc)含量的相关性和精密度。方法用比色法和NMR法测定A、C、Y、W135群脑膜炎球菌荚膜多糖...目的比较Hestrin比色法(简称比色法)和核磁共振(nuclear magnetic resonance,NMR)法在检测A、C、Y、W135群脑膜炎球菌荚膜多糖氧乙酰基(O-Acetyl,OAc)含量的相关性和精密度。方法用比色法和NMR法测定A、C、Y、W135群脑膜炎球菌荚膜多糖及其多糖衍生物,Y、W135群荚膜多糖水解物的OAc含量,比较分析两种方法的相关性及精密度。结果两种方法检测A、C、Y、W135群脑膜炎球菌荚膜多糖OAc含量的决定系数分别为R^2≥0.954、R^2≥0.960、R^2≥0.969、R^2≥0.972;比色法检测3批C群脑膜炎球菌荚膜多糖(PSC)OAc含量的精密度,SD值分别为0.21、0.21、0.18,对应CV值分别为9.03%、9.01%、8.70%(95%置信区间);NMR法检测3批A群脑膜炎球菌荚膜多糖(PSA)OAc含量的精密度,SD值分别为0.66、0.78、0.83,对应CV值分别为0.72%、0.85%、0.93%(95%置信区间);结论比色法和NMR法在检测A、C、Y、W135群脑膜炎球菌荚膜多糖OAc含量方面相关性良好,精密度良好,核磁法较比色法精密度更高。展开更多
Carbon materials are crucially important for the realization of potassium-ion batteries.However,the potassium storage mechanisms in various carbon materials are incompletely understood.Herein,solid-state ^(13)C nuclea...Carbon materials are crucially important for the realization of potassium-ion batteries.However,the potassium storage mechanisms in various carbon materials are incompletely understood.Herein,solid-state ^(13)C nuclear magnetic resonance(NMR) spectroscopy coupled with Raman and X-ray diffraction(XRD) techniques are employed to study the reaction mechanism in a soft carbon quantitatively.It is revealed that the insertion of potassium ions into the soft carbon firstly induces a transformation of the disordered region to short-range ordered stacking,involving both the pristine local unorganized and organized carbon layers.Subsequently,potassium ions intercalate into the rearranged carbon structure,finally producing the nano-sized KC_(8).Moreover,a remarkable c apacity of 322 mAh·g^(-1) with a low mid potassiation voltage of <0.3 V is present for the prepared soft carbon,which is on account of the underlying potassium storage sites,including the disordered stacking carbon as a main component of the soft carbon.These results suggest that regulating the disordered stacking region in the turbostratic structure of soft carbon is a critical issue for further improving the potassium storage performance.展开更多
Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To un...Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools.展开更多
基金supported by the National Natural Science Foundation of China(41872174 and 42072189)the Program for Innovative Research Team(in Science and Technology)in the Universities of Henan Province,China(21IRTSTHN007)the Program for Innovative Research Team(in Science and Technology)of Henan Polytechnic University(T2020-4)。
文摘Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existence of aromatic structure,heteroatom structure and fat structure in coal.MS(materials studio)software was used to optimize and construct a 3D molecular structure model of coal.A method for establishing a coal molecular structure model was formed,which was“determination of key structures in coal,construction of planar molecular structure model,and optimization of three-dimensional molecular structure model”.The structural differences were compared and analyzed.The results show that with the increase of coal rank,the dehydrogenation of cycloalkanes in coal is continuously enhanced,and the content of heteroatoms in the aromatic ring decreases.The heteroatoms and branch chains in the coal are reduced,and the structure is more orderly and tight.The stability of the structure is determined by theπ-πinteraction between the aromatic rings in the nonbonding energy EN.Key Stretching Energy The size of EB determines how tight the structure is.The research results provide a method and reference for the study of the molecular structure of medium and high coal ranks.
基金Projects(20775010, 21075011) supported by the National Natural Science Foundation of ChinaProject(2008AA05Z405) supported by the National High-tech Research and Development Program of China+2 种基金Project(09JJ3016) supported by the Natural Science Foundation of Hunan Province, ChinaProject(09C066) supported by the Scientific Research Fund of Hunan Provincial Education Department, ChinaProject(2010CL01) supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, China
文摘A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear regression,contained four descriptors solely extracted from the molecular structure of compounds. The statistical results of the final model show that R2= 0.982 4 and S=0.869 8 (where R is the correlation coefficient and S is the standard deviation). To test its predictive ability,the model was further used to predict the 13C NMR spectra of the carbinol carbon atoms of other nine compounds which were not included in the developed model. The average relative errors are 0.94% and 1.70%,respectively,for the training set and the predictive set. The model is statistically significant and shows good stability for data variation as tested by the leave-one-out (LOO) cross-validation. The comparison with other approaches also reveals good performance of this method.
文摘近年来,生物质碳(biochar)作为新型吸附剂被广泛研究。但由于制备biochar的生物质原料和热解温度的不同,使biochar的结构和组成存在差异,从而影响其对污染物的吸附。目前关于biochar的结构和组成的研究还不够全面。因此,结合了能谱与光谱分析的手段,对biochar的结构和组成进行了深入的分析。选取木质类(柳树枝条)和草类(水稻秸秆)作为原料,分别在不同热解温度(300,450和600℃)下制得biochars,并对biochars样品进行元素分析、X射线光电子能谱分析(XPS)和固态13 C核磁共振(13 C NMR)研究,以阐明不同热解温度和生物质来源的biochars的结构和组成。结果显示:biochar的H/C,O/C和(O+N)/C的比值随着热解温度的升高而降低;草类biochar比木质类biochar具有更高的灰分含量和表面极性;木质类biochar的矿物主要分布在样品颗粒内部,其表面被有机质覆盖,而草类biochar部分矿物暴露在样品颗粒表面;13 C NMR显示低温制得的biochar主要由芳香碳、脂肪碳、羧基和羰基碳组成,高温制得的biochar主要由芳香碳组成,且低温制得biochars中,木质类biochars比草类biochars含有更高的木质素的残留碳结构,这是由于木质类biochars原材料中含有更高的木质素。
基金Jilin Province Science and Technology Department Major Technical Special Bidding Projects(20150203004NY)National Key R&D Projects(2017YFD0201801)
文摘为明确颗粒有机碳在土壤固碳中的作用机制,对比研究了不同有机培肥土壤颗粒有机碳的结构差异。以单施化肥处理为对照,选择了四种有机物料进行定位培肥试验,利用^(13) C NMR和红外光谱技术对比分析不同有机培肥对土壤颗粒有机碳结构的影响。结果表明:颗粒有机碳以脂肪碳和含氧基团为主,脂化度高于75%,含氧官能团含量高于50%;不同有机培肥对土壤颗粒有机碳结构的影响差异性显著,树叶培肥在提高颗粒有机碳芳香度的同时,亲水性也大幅度提高,比单施化肥处理(对照)提高了0.78%;短期内,牛粪、秸秆和树叶培肥均可提高土壤颗粒有机碳的芳香度,但从长远角度分析,牛粪和秸秆培肥更利于土壤颗粒有机碳的稳定,尤其是秸秆培肥,其颗粒有机碳的芳香度分别比对照和牛粪培肥高0.35%和0.11%,而亲水性远低于二者;红外光谱与核磁分析的结果基本一致,红外光谱可用于大量样品的颗粒有机碳结构初步筛选。
文摘We have developed an open-source cross-platform software toolkit entitled ACCEPT-NMR (Automated Crystal Contact Extrapolation/Prediction Toolkit for NMR) as a helpful tool to automate many of the complex tasks required to find and visualize crystal contacts in structures of biomolecules and biomolecular assemblies. This toolkit provides many powerful features geared toward NMR spectroscopy and related disciplines, such as isotopic labeling, advanced visualization options, and reporting tools. Using this software, we have undertaken a survey of available chemical shift data in the literature and deposited in the BMRB, and show that the mere presence of one or more crystal contacts to a residue confers an approximately 65% likelihood of significant chemical shift perturbations (relative to solution NMR chemical shifts). The presence of each additional crystal contact subsequently increases this probability, resulting in predictive accuracies in excess of 80% in many cases. Conversely, the presence of a significant experimental chemical shift perturbation indicates a >60% likelihood of finding one or more crystal contacts to a particular residue. Pinpointing sites likely to experience large CSPs is critical to mapping solution NMR chemical shifts onto solid-state NMR data as a basis for preliminary assignments, and can thus simplify the assignment process for complex biomolecules. Mapping observed CSPs onto the molecular structure, on the other hand, can indicate the presence of crystal interfaces where no crystal structure is available. Finally, by detecting sites critical to intermolecular interfaces, ACCEPT-NMR can help guide experimental approaches (e.g. isotopic labeling schemes) to detect and probe specific inter-subunit interactions.
文摘目的比较Hestrin比色法(简称比色法)和核磁共振(nuclear magnetic resonance,NMR)法在检测A、C、Y、W135群脑膜炎球菌荚膜多糖氧乙酰基(O-Acetyl,OAc)含量的相关性和精密度。方法用比色法和NMR法测定A、C、Y、W135群脑膜炎球菌荚膜多糖及其多糖衍生物,Y、W135群荚膜多糖水解物的OAc含量,比较分析两种方法的相关性及精密度。结果两种方法检测A、C、Y、W135群脑膜炎球菌荚膜多糖OAc含量的决定系数分别为R^2≥0.954、R^2≥0.960、R^2≥0.969、R^2≥0.972;比色法检测3批C群脑膜炎球菌荚膜多糖(PSC)OAc含量的精密度,SD值分别为0.21、0.21、0.18,对应CV值分别为9.03%、9.01%、8.70%(95%置信区间);NMR法检测3批A群脑膜炎球菌荚膜多糖(PSA)OAc含量的精密度,SD值分别为0.66、0.78、0.83,对应CV值分别为0.72%、0.85%、0.93%(95%置信区间);结论比色法和NMR法在检测A、C、Y、W135群脑膜炎球菌荚膜多糖OAc含量方面相关性良好,精密度良好,核磁法较比色法精密度更高。
基金financially supported by the National Nature Science Foundation of China (Nos.21905314, 21825202,21733012,92045302 and 21603231)Newton Advanced Fellowships (No.NAF/R2/180603)+1 种基金"Scientist Studio Funding" from Tianmu Lake Institute of Advanced Energy Storage Technologies Co.,Ltdthe Science and Technology Service Network Initiative from Chinese Academy of Science (No.STS 2020T3022)。
文摘Carbon materials are crucially important for the realization of potassium-ion batteries.However,the potassium storage mechanisms in various carbon materials are incompletely understood.Herein,solid-state ^(13)C nuclear magnetic resonance(NMR) spectroscopy coupled with Raman and X-ray diffraction(XRD) techniques are employed to study the reaction mechanism in a soft carbon quantitatively.It is revealed that the insertion of potassium ions into the soft carbon firstly induces a transformation of the disordered region to short-range ordered stacking,involving both the pristine local unorganized and organized carbon layers.Subsequently,potassium ions intercalate into the rearranged carbon structure,finally producing the nano-sized KC_(8).Moreover,a remarkable c apacity of 322 mAh·g^(-1) with a low mid potassiation voltage of <0.3 V is present for the prepared soft carbon,which is on account of the underlying potassium storage sites,including the disordered stacking carbon as a main component of the soft carbon.These results suggest that regulating the disordered stacking region in the turbostratic structure of soft carbon is a critical issue for further improving the potassium storage performance.
基金supported by the National Natural Science Foundation of China(Grant No.31570466)the National Basic Research Program of China(Grant no.2012CB416905)
文摘Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools.