The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction ...Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.展开更多
Garnet-structured ceramic electrolyte Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)attracts significant consideration in solid-state Li metal batteries due to its wide electrochemical window and favorable compatibili...Garnet-structured ceramic electrolyte Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)attracts significant consideration in solid-state Li metal batteries due to its wide electrochemical window and favorable compatibility with Li metal.However,the deployment of LLZTO is severely hampered by poor contact between LLZTO and Li metal anode.In this paper,an ultra-thin Al-Si interface buffer layer(10 nm)is constructed on LLZTO by a magnetron sputtering method,which allows superior wetting of Li onto the LLZTO surface due to the alloying reaction between the Al-Si layer and Li metal.The resulting Li/Al-Si coated LLZTO(ASL)/Li symmetrical cell delivers an interfacial resistance of 15.0Ωcm^(-2),which is much lower than that of 1140.3Ωcm^(-2)for the bare LLZTO symmetrical cell.Moreover,the Li/ASL/Li symmetrical cells exhibit stable plating/striping performance(800 h)with small voltage hysteresis at 1.0 mA cm^(-2).Besides,the full cell with LiFePO_(4)cathode reveals a high capacity of 124.1 mA h g^(-1)after 600 cycles at 0.5C with a lowcapacity decay of 0.032%per cycle.We believe this work will facilitate the development of solid-state rechargeable batteries.展开更多
Designing a durable lithium metal anode for solid state batteries requires a controllable and uniform deposition of lithium, and the metal lithium layer should maintain a good interface contact with solid state electr...Designing a durable lithium metal anode for solid state batteries requires a controllable and uniform deposition of lithium, and the metal lithium layer should maintain a good interface contact with solid state electrolyte during cycles. In this work, we construct a robust functional interface layer on the modified LiB electrode which considerably improves the electrochemical stability of lithium metal electrode in solid state batteries. It is found that the functional interface layer consisting of polydioxolane, polyiodide ion and Li TFSI effectively restrains the growth of lithium dendrites through the redox shuttle reaction of I-/I3-and maintains a good contact between lithium anode and solid electrolyte during cycles. Benefit from these two advantages, the modified Li-B anode exhibits a remarkable cyclic performance in comparison with those of the bare Li-B anode.展开更多
All-solid-state batteries potentially exhibit high specific energy and high safety,which is one of the development directions for nextgeneration lithium-ion batteries.The compatibility of all-solid composite electrode...All-solid-state batteries potentially exhibit high specific energy and high safety,which is one of the development directions for nextgeneration lithium-ion batteries.The compatibility of all-solid composite electrodes with high-nickel layered cathodes and inorganic solid electrolytes is one of the important problems to be solved.In addition,the interface and mechanical problems of high-nickel layered cathodes and inorganic solid electrolyte composite electrodes have not been thoroughly addressed.In this paper,the possible interface and mechanical problems in the preparation of high-nickel layered cathodes and inorganic solid electrolytes and their interface reaction during charge–discharge and cycling are reviewed.The mechanical contact problems from phenomena to internal causes are also analyzed.Uniform contact between the high-nickel cathode and solid electrolyte in space and the ionic conductivity of the solid electrolyte are the prerequisites for the good performance of a high-nickel layered cathode.The interface reaction and contact loss between the high-nickel layered cathode and solid electrolyte in the composite electrode directly affect the passage of ions and electrons into the active material.The buffer layer constructed on the high-nickel cathode surface can prevent direct contact between the active material and electrolyte and slow down their interface reaction.An appropriate protective layer can also slow down the interface contact loss by reducing the volume change of the high-nickel layered cathode during charge and discharge.Finally,the following recommendations are put forward to realize the development vision of high-nickel layered cathodes:(1)develop electrochemical systems for high-nickel layered cathodes and inorganic solid electrolytes;(2)elucidate the basic science of interface and electrode processes between high-nickel layered cathodes and inorganic solid electrolytes,clarify the mechanisms of the interfacial chemical and electrochemical reactions between the two materials,and address the intrinsic safety issues;(3)strengthen the development of research and engineering technologies and their preparation methods for composite electrodes with high-nickel layered cathodes and solid electrolytes and promote the industrialization of all-solid-state batteries.展开更多
In the past few years,the all-solid lithium battery has attracted worldwide attentions,the ionic conductivity of some all-solid lithium-ion batteries has reached 10^(-3)-10^(-2) S/cm,indicating that the transport of l...In the past few years,the all-solid lithium battery has attracted worldwide attentions,the ionic conductivity of some all-solid lithium-ion batteries has reached 10^(-3)-10^(-2) S/cm,indicating that the transport of lithium ions in solid electrolytes is no longer a major problem.However,some interface issues become research hotspots.Examples of these interfacial issues include the electrochemical decomposition reaction at the electrode-electrolyte interface;the low effective contact area between the solid electrolyte and the electrode etc.In order to solve the issues,researchers have pursued many different approaches.The addition of a buffer layer between the electrode and the solid electrolyte has been at the center of this endeavor.In this review paper,we provide a systematic summarization of the problems on the electrode-solid electrolyte interface and detailed reflection on the latest works of buffer-based therapies,and the review will end with a personal perspective on the improvement of buffer-based therapies.展开更多
Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the s...Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the synthesis process. After successive heat treatments at 650 and 950 ℃, the prepared powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy. The powders prepared by adding salt (NaCl) as grinding aid exhibit a clear R3m layer structure. The powders by other grinding aids like heptane show some impurity peaks in the XRD pattern. The former powders show a uniform particle size distribution of less than 1 μm average size while the latter shows a wide distribution ranging from 1 to 10 μm. Energy dispersive X-ray (EDX) analysiss show that the ratio of Ni, Co, and Mn content in the powder is approximately 1/3, 1/3, and 1/3, respecively. The EDX data indicate no incorporation of sodium or chlorine into the powders. Charge-discharge tests gave an initial discharge capacity of 160 mAh·g-1 for the powders with NaCl addition while 70 mAh·g-1 for the powders with heptane.展开更多
Garnet-type solid-state electrolytes(SSEs)are a remarkable Li-ion electrolyte for the realization of next-generation all-solid-state lithium batteries due to their excellent stability against Li metal as well as high ...Garnet-type solid-state electrolytes(SSEs)are a remarkable Li-ion electrolyte for the realization of next-generation all-solid-state lithium batteries due to their excellent stability against Li metal as well as high ionic conductivities at room temperature.However,garnet electrolytes always contain undesired and hardly removable Li_(2)CO_(3) contaminations that have persistently large resistance and unstable interface contact with Li metal.This is a critical bottleneck for the practical application of garnet electrolytes.Here,we design a novel strategy to completely root out Li_(2)CO_(3) both inside and on the surface of garnet.This is achieved by a so-called double replacement reaction between Li_(2)CO_(3) and SiO_(2) during one-step hot press process for garnet electrolyte densification.It leads to in-situ transformation of LixSiOy(LSO)mostly locating around the grain boundaries of garnet.Due to the higher ion conductivity and better electrochemistry stability of LSO than Li_(2)CO_(3),the modified garnet electrolyte shows much improved electrochemical performance.Moreover,the wettability between modified garnet electrolyte and lithium metals was significantly enhanced in the absence of surface Li_(2)CO_(3).As a proof of concept,an assembled Li symmetric cell with modified garnet electrolyte displays a high critical current density(CCD)of 0.7 mA cm^(-2)and a low interfacial impedance(5Ωcm^(2))at 25℃.These results indicate that the upcycling of Li_(2)CO_(3)is a promising strategy to well-address the degradation and interfacial issue associated with garnet electrolytes.展开更多
This study deals with Peak of electron density in F2-layer sensibility scale during quiet time on solar minimum. Peaks of electron density in F2-layer (NmF2) values at the quietest days are compared to those carried o...This study deals with Peak of electron density in F2-layer sensibility scale during quiet time on solar minimum. Peaks of electron density in F2-layer (NmF2) values at the quietest days are compared to those carried out from the two nearest days (previous and following of quietest day). The study uses International Reference Ionosphere (IRI) for ionosphere modeling. The located station is Ouagadougou, in West Africa. Solar minimum of phase 22 is considered in this study. Using three core principles of ionosphere modeling under IRI running conditions, the study enables to carry out Peak of electron density in F2-layer values during the quietest days of the characteristic months for the four different seasons. These parameters are compared to those of the previous and the following of the quietest days (the day before and following each quietest selected day) at the same hour. The knowledge of NmF2 values at the quietest days and at the two nearest days enables to calculate the relative error that can be made on this parameter. This calculation highlights insignificant relative errors. This means that NmF2 values at the two nearest days of each quietest day on solar minimum can be used for simulating the quietest days’ behavior. NmF2 values obtained by running IRI model have good correlation with those carried out by Thermosphere-Ionosphere-Electrodynamics-General Circulation Model (TIEGCM).展开更多
Layered double hydroxides(LDHs)have received extensive attention in many fields such as catalysis,environmental management and medical applications.Typically,expensive soluble metal salts are commonly used as the star...Layered double hydroxides(LDHs)have received extensive attention in many fields such as catalysis,environmental management and medical applications.Typically,expensive soluble metal salts are commonly used as the starting materials for the synthesis of LDHs.Here,we report a novel synthesis route for Mg/Al-LDH by using inexpensive basic magnesium carbonate as the starting material.X-ray diffraction(XRD)and solid-state nuclear magnetic resonance(ssNMR)data show that LDHs with rich defects are formed rapidly at room temperature and good crystallinity can be obtained after further hydrothermal treatment.These results provide a simple,rapid and green preparation method for LDHs.展开更多
Ionosphere layer is the atmosphere region which reflects radio waves for telecommunication. The density in particles in this layer influences the quality of communication. This study deals with the effects of Total El...Ionosphere layer is the atmosphere region which reflects radio waves for telecommunication. The density in particles in this layer influences the quality of communication. This study deals with the effects of Total Electron Contents (TEC) on the critical frequency of radio waves in the F2-layer. Total Electron Contents parameter symbolizes electron bulk surface density in ionosphere layer. Above critical frequency value in F2 layer (foF2), radio waves pass through ionosphere. The knowledge of this value enables to calibrate transmission frequencies. In this study, we consider TEC effects on foF2 under quiet time conditions during the maximum and the minimum of solar cycle 22, at Ouagadougou station, in West Africa. The study also considers the effects of seasons and the hourly variability of TEC and foF2. This work shows winter anomaly on foF2 and TEC on minimum and maximum of solar cycle phase respectively. Running International Reference Ionosphere (IRI) model enables to carry out the effects of TEC on foF2 by use of their monthly average values. This leads to a new approach to calibrate radio transmitters.展开更多
Safety issues induced by infinite anode volume change and uncontrolled lithium(Li)dendrite growth have become the biggest obstacle to the practical application of Li metal batteries.In addition,the tra-ditional rollin...Safety issues induced by infinite anode volume change and uncontrolled lithium(Li)dendrite growth have become the biggest obstacle to the practical application of Li metal batteries.In addition,the tra-ditional rolling method makes it difficult to manufacture thin Li foil with high mechanical strength and low Li content.Herein,a three-dimensional(3D)lithophilic carbon paper/copper(Cu)current collector hybrid anode with ultra-low Li metal content is prepared by a hot-pressing method.The highly re-versible and stable lithiophilic layer LiC_(x) formed in situ by heating/pressing treatment provides abun-dant nucleation sites and reduces the Li nucleation overpotential,thereby effectively suppressing Li den-drite growth.Moreover,the volume change and pulverization problems of Li metal anode during depo-sition/stripping also can be accommodated by the 3D skeleton.The optimization effect has been directly confirmed by in-situ optical and ex-situ scanning electron microscope observation.Therefore,highly sta-ble performance(158.4 mA h g^(-1) at 2 C after 200 cycles with a capacity retention of 95.24%)in Li@LCP-Cu||NCM811 coin cell can be achieved.Furthermore,the solid-state battery assembled with the hybrid anode,poly(vinylidene fluoride)(PVDF)-based polymer electrolyte and polyethylene oxide(PEO)interface functional layer also exhibits the best electrochemical and safety performance,which also proves that the Li@LCP-Cu anode has great potential for application in solid-state batteries.展开更多
Solid-state lithium-metal-batteries(SSLMBs)using garnet Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)as the solid electrolyte are expected to conquer the safety concerns of high energy Li batteries with organic liquid e...Solid-state lithium-metal-batteries(SSLMBs)using garnet Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)as the solid electrolyte are expected to conquer the safety concerns of high energy Li batteries with organic liquid electrolytes owing to its nonflammable nature and good mechanical strength.However,the poor interfacial contact between the Li anode and LLZTO greatly restrains the practical applications of the electrolyte,because large polarization,dendritic Li formation and penetration can occur at the interfaces.Here,an effective method is proposed to improve the wettability of the LLZTO toward lithium and reduce the interfacial resistance by engineering universal lithiophilic interfacial layers.Thanks to the in-situ formed lithiophilic and ionic conductive Co/Li_(2)O interlayers,the symmetric Li/CoO-LLZTO/Li batteries present much smaller overpotential,ultra-low areal specific resistance(ASR,12.3 X cm^(2)),high critical current density(CCD,1.1 mA cm^(-2)),and outstanding cycling performance(1696 h at a current density of 0.3 mA cm^(-2))at 25℃.Besides,the solid-state Li/CoO-LLZTO/LFP cells deliver an excellent electrochemical performance with a high coulombic efficiency of~100%and a long cycling time over 185 times.Surprisingly,the high-voltage(4.6 V)solid state Li/CoO-LLZTO/Li_(1.4)Mn_(0.6)Ni_(0.2)Co_(0.2)O_(2.4)(LMNC622)batteries can also realize an ultra-high specific capacity(232.5 mAh g-1)under 0.1 C at 25℃.This work paves an effective way for practical applications of the dendrite-free SSLMBs.展开更多
Compared with traditional solid-state drives(SSDs),open-channel SSDs(OCSSDs)expose their internal physical layout and provide a host-based flash translation layer(FTL)that allows host-side software to control the inte...Compared with traditional solid-state drives(SSDs),open-channel SSDs(OCSSDs)expose their internal physical layout and provide a host-based flash translation layer(FTL)that allows host-side software to control the internal operations such as garbage collection(GC)and input/output(I/O)scheduling.In this paper,we comprehensively survey research works built on OCSSDs in recent years.We show how they leverage the features of OCSSDs to achieve high throughput,low latency,long lifetime,strong performance isolation,and high resource utilization.We categorize these efforts into five groups based on their optimization methods:adaptive interface customizing,rich FTL co-designing,internal parallelism exploiting,rational I/O scheduling,and efficient GC processing.We discuss the strengths and weaknesses of these efforts and find that almost all these efforts face a dilemma between performance effectiveness and management complexity.We hope that this survey can provide fundamental knowledge to researchers who want to enter this field and further inspire new ideas for the development of OCSSDs.展开更多
Poly(vinylidene fluoride)(PVDF)-based polymer electrolytes(PEs)with good electrochemical performance and processability as well as low-cost advantage,have great potential applications in solid-state lithium(Li)metal b...Poly(vinylidene fluoride)(PVDF)-based polymer electrolytes(PEs)with good electrochemical performance and processability as well as low-cost advantage,have great potential applications in solid-state lithium(Li)metal batteries(SSLMBs).PVDF-based PEs are generally produced by employing a solution-casting approach with N,N-dimethylformamide(DMF)as the solvent,accompanied by the formation of[DMF-Li^(+)]complex,which facilitates the Li-ion transport.However,the residual DMF can react continuously with lithium(Li)metal,thereby deteriorating the interface layer in the middle of the PVDF-based PEs and Li anodes.Herein,we introduce propylene carbonate(PC)into the PVDF-based PEs to regulate the solvation structure and stabilize the interface layer between the PEs and Li anodes.PC accelerates the dissociation of lithium oxalyldifluoroborate(LiODFB).Consequently,“lithium propylene dicarbonate(LPDC)‒B-O”oligomer forms as the interfacial layer with high tenacity,homogeneity,and densification,which improves the interfacial contact and suppresses the continuous reaction between the residual DMF and Li anode.We further demonstrate that the PVDF-based PE prepared with DMF-PC mix-solvents shows improved room-temperature ionic conductivity(1.18×10^(-3) S/cm),enhanced stability against electrodes,and superior cycling performance in LiCoO_(2)-based SSLMBs(maintaining 84% of the initial discharge capacity after 300 cycles).展开更多
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金the support from the National Natural Science Foundation of China(Grant No.22179006)supported by the Beijing Natural Science Foundation(2244101)+1 种基金the National Natural Science Foundation of China(Grant No.52072036)the SINOPEC project(223128)。
文摘Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.
基金supported by the National Natural Science Foundation of China(22209140,52072328,and 52175192)the Incubation Program of Youth Innovation in Shandong Province and Natural Science Foundation of Shandong Province(ZR2022QE059)。
文摘Garnet-structured ceramic electrolyte Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)attracts significant consideration in solid-state Li metal batteries due to its wide electrochemical window and favorable compatibility with Li metal.However,the deployment of LLZTO is severely hampered by poor contact between LLZTO and Li metal anode.In this paper,an ultra-thin Al-Si interface buffer layer(10 nm)is constructed on LLZTO by a magnetron sputtering method,which allows superior wetting of Li onto the LLZTO surface due to the alloying reaction between the Al-Si layer and Li metal.The resulting Li/Al-Si coated LLZTO(ASL)/Li symmetrical cell delivers an interfacial resistance of 15.0Ωcm^(-2),which is much lower than that of 1140.3Ωcm^(-2)for the bare LLZTO symmetrical cell.Moreover,the Li/ASL/Li symmetrical cells exhibit stable plating/striping performance(800 h)with small voltage hysteresis at 1.0 mA cm^(-2).Besides,the full cell with LiFePO_(4)cathode reveals a high capacity of 124.1 mA h g^(-1)after 600 cycles at 0.5C with a lowcapacity decay of 0.032%per cycle.We believe this work will facilitate the development of solid-state rechargeable batteries.
基金supported by the National Natural Science Foundation of China (NO. 21805113)the Fundamental Research Funds for the Central Universities (NO. 11618410 and NO. 11619103)the China Postdoctoral Science Foundation (NO. 2019M653271)。
文摘Designing a durable lithium metal anode for solid state batteries requires a controllable and uniform deposition of lithium, and the metal lithium layer should maintain a good interface contact with solid state electrolyte during cycles. In this work, we construct a robust functional interface layer on the modified LiB electrode which considerably improves the electrochemical stability of lithium metal electrode in solid state batteries. It is found that the functional interface layer consisting of polydioxolane, polyiodide ion and Li TFSI effectively restrains the growth of lithium dendrites through the redox shuttle reaction of I-/I3-and maintains a good contact between lithium anode and solid electrolyte during cycles. Benefit from these two advantages, the modified Li-B anode exhibits a remarkable cyclic performance in comparison with those of the bare Li-B anode.
文摘All-solid-state batteries potentially exhibit high specific energy and high safety,which is one of the development directions for nextgeneration lithium-ion batteries.The compatibility of all-solid composite electrodes with high-nickel layered cathodes and inorganic solid electrolytes is one of the important problems to be solved.In addition,the interface and mechanical problems of high-nickel layered cathodes and inorganic solid electrolyte composite electrodes have not been thoroughly addressed.In this paper,the possible interface and mechanical problems in the preparation of high-nickel layered cathodes and inorganic solid electrolytes and their interface reaction during charge–discharge and cycling are reviewed.The mechanical contact problems from phenomena to internal causes are also analyzed.Uniform contact between the high-nickel cathode and solid electrolyte in space and the ionic conductivity of the solid electrolyte are the prerequisites for the good performance of a high-nickel layered cathode.The interface reaction and contact loss between the high-nickel layered cathode and solid electrolyte in the composite electrode directly affect the passage of ions and electrons into the active material.The buffer layer constructed on the high-nickel cathode surface can prevent direct contact between the active material and electrolyte and slow down their interface reaction.An appropriate protective layer can also slow down the interface contact loss by reducing the volume change of the high-nickel layered cathode during charge and discharge.Finally,the following recommendations are put forward to realize the development vision of high-nickel layered cathodes:(1)develop electrochemical systems for high-nickel layered cathodes and inorganic solid electrolytes;(2)elucidate the basic science of interface and electrode processes between high-nickel layered cathodes and inorganic solid electrolytes,clarify the mechanisms of the interfacial chemical and electrochemical reactions between the two materials,and address the intrinsic safety issues;(3)strengthen the development of research and engineering technologies and their preparation methods for composite electrodes with high-nickel layered cathodes and solid electrolytes and promote the industrialization of all-solid-state batteries.
基金financially supported by the Fundamental Research Funds for the Central Universities of China(No.FRF-BD-19-008A)the Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(No.2019H1D3A2A02100593)the National Research Foundation of Korea(NRF)grant funded by the Korean government(Nos.2019R1C1C 1006310,2020R1I1A1A01072996,2021K2A9A2A06044652,and 2019R1A2C1002844).
文摘In the past few years,the all-solid lithium battery has attracted worldwide attentions,the ionic conductivity of some all-solid lithium-ion batteries has reached 10^(-3)-10^(-2) S/cm,indicating that the transport of lithium ions in solid electrolytes is no longer a major problem.However,some interface issues become research hotspots.Examples of these interfacial issues include the electrochemical decomposition reaction at the electrode-electrolyte interface;the low effective contact area between the solid electrolyte and the electrode etc.In order to solve the issues,researchers have pursued many different approaches.The addition of a buffer layer between the electrode and the solid electrolyte has been at the center of this endeavor.In this review paper,we provide a systematic summarization of the problems on the electrode-solid electrolyte interface and detailed reflection on the latest works of buffer-based therapies,and the review will end with a personal perspective on the improvement of buffer-based therapies.
基金This research was supportedby a grant under‘Development of Key Materials and Fundamental Tech-nology for Secondary Battery’Program of the Ministry of Commerce,Industry and Energy,Korea.
文摘Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the synthesis process. After successive heat treatments at 650 and 950 ℃, the prepared powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy. The powders prepared by adding salt (NaCl) as grinding aid exhibit a clear R3m layer structure. The powders by other grinding aids like heptane show some impurity peaks in the XRD pattern. The former powders show a uniform particle size distribution of less than 1 μm average size while the latter shows a wide distribution ranging from 1 to 10 μm. Energy dispersive X-ray (EDX) analysiss show that the ratio of Ni, Co, and Mn content in the powder is approximately 1/3, 1/3, and 1/3, respecively. The EDX data indicate no incorporation of sodium or chlorine into the powders. Charge-discharge tests gave an initial discharge capacity of 160 mAh·g-1 for the powders with NaCl addition while 70 mAh·g-1 for the powders with heptane.
基金financial support from the National Natural Science Foundation of China(Grant No.11804261)National Key Research and Development Program of China(Grant No.2019YFA0704900)。
文摘Garnet-type solid-state electrolytes(SSEs)are a remarkable Li-ion electrolyte for the realization of next-generation all-solid-state lithium batteries due to their excellent stability against Li metal as well as high ionic conductivities at room temperature.However,garnet electrolytes always contain undesired and hardly removable Li_(2)CO_(3) contaminations that have persistently large resistance and unstable interface contact with Li metal.This is a critical bottleneck for the practical application of garnet electrolytes.Here,we design a novel strategy to completely root out Li_(2)CO_(3) both inside and on the surface of garnet.This is achieved by a so-called double replacement reaction between Li_(2)CO_(3) and SiO_(2) during one-step hot press process for garnet electrolyte densification.It leads to in-situ transformation of LixSiOy(LSO)mostly locating around the grain boundaries of garnet.Due to the higher ion conductivity and better electrochemistry stability of LSO than Li_(2)CO_(3),the modified garnet electrolyte shows much improved electrochemical performance.Moreover,the wettability between modified garnet electrolyte and lithium metals was significantly enhanced in the absence of surface Li_(2)CO_(3).As a proof of concept,an assembled Li symmetric cell with modified garnet electrolyte displays a high critical current density(CCD)of 0.7 mA cm^(-2)and a low interfacial impedance(5Ωcm^(2))at 25℃.These results indicate that the upcycling of Li_(2)CO_(3)is a promising strategy to well-address the degradation and interfacial issue associated with garnet electrolytes.
文摘This study deals with Peak of electron density in F2-layer sensibility scale during quiet time on solar minimum. Peaks of electron density in F2-layer (NmF2) values at the quietest days are compared to those carried out from the two nearest days (previous and following of quietest day). The study uses International Reference Ionosphere (IRI) for ionosphere modeling. The located station is Ouagadougou, in West Africa. Solar minimum of phase 22 is considered in this study. Using three core principles of ionosphere modeling under IRI running conditions, the study enables to carry out Peak of electron density in F2-layer values during the quietest days of the characteristic months for the four different seasons. These parameters are compared to those of the previous and the following of the quietest days (the day before and following each quietest selected day) at the same hour. The knowledge of NmF2 values at the quietest days and at the two nearest days enables to calculate the relative error that can be made on this parameter. This calculation highlights insignificant relative errors. This means that NmF2 values at the two nearest days of each quietest day on solar minimum can be used for simulating the quietest days’ behavior. NmF2 values obtained by running IRI model have good correlation with those carried out by Thermosphere-Ionosphere-Electrodynamics-General Circulation Model (TIEGCM).
基金supported by National Key R&D Program of China(2021YFA1502803)the National Natural Science Foundation of China(NSFC)(21972066 and 91745202)+3 种基金NSFC-Royal Society Joint Program(21661130149)Luming Peng thanks the Royal Society and Newton Fund for a Royal Society-Newton Advanced Fellowshipsupported by the Research Funds for the Frontiers Science Center for Critical Earth Material Cycling,Nanjing Universitya Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Layered double hydroxides(LDHs)have received extensive attention in many fields such as catalysis,environmental management and medical applications.Typically,expensive soluble metal salts are commonly used as the starting materials for the synthesis of LDHs.Here,we report a novel synthesis route for Mg/Al-LDH by using inexpensive basic magnesium carbonate as the starting material.X-ray diffraction(XRD)and solid-state nuclear magnetic resonance(ssNMR)data show that LDHs with rich defects are formed rapidly at room temperature and good crystallinity can be obtained after further hydrothermal treatment.These results provide a simple,rapid and green preparation method for LDHs.
文摘Ionosphere layer is the atmosphere region which reflects radio waves for telecommunication. The density in particles in this layer influences the quality of communication. This study deals with the effects of Total Electron Contents (TEC) on the critical frequency of radio waves in the F2-layer. Total Electron Contents parameter symbolizes electron bulk surface density in ionosphere layer. Above critical frequency value in F2 layer (foF2), radio waves pass through ionosphere. The knowledge of this value enables to calibrate transmission frequencies. In this study, we consider TEC effects on foF2 under quiet time conditions during the maximum and the minimum of solar cycle 22, at Ouagadougou station, in West Africa. The study also considers the effects of seasons and the hourly variability of TEC and foF2. This work shows winter anomaly on foF2 and TEC on minimum and maximum of solar cycle phase respectively. Running International Reference Ionosphere (IRI) model enables to carry out the effects of TEC on foF2 by use of their monthly average values. This leads to a new approach to calibrate radio transmitters.
基金supported by the National Key R&D Program of China (Grant No.2020YFA0710500)The authors acknowledge the basic scientific research business expenses Program of Xi’an Jiaotong University (Grant No.xzy022022053)the Independent Research Project of the State Key Laboratory of Electrical Insulation and Power Equipment (Grant No.EIPE23303)for financial support.
文摘Safety issues induced by infinite anode volume change and uncontrolled lithium(Li)dendrite growth have become the biggest obstacle to the practical application of Li metal batteries.In addition,the tra-ditional rolling method makes it difficult to manufacture thin Li foil with high mechanical strength and low Li content.Herein,a three-dimensional(3D)lithophilic carbon paper/copper(Cu)current collector hybrid anode with ultra-low Li metal content is prepared by a hot-pressing method.The highly re-versible and stable lithiophilic layer LiC_(x) formed in situ by heating/pressing treatment provides abun-dant nucleation sites and reduces the Li nucleation overpotential,thereby effectively suppressing Li den-drite growth.Moreover,the volume change and pulverization problems of Li metal anode during depo-sition/stripping also can be accommodated by the 3D skeleton.The optimization effect has been directly confirmed by in-situ optical and ex-situ scanning electron microscope observation.Therefore,highly sta-ble performance(158.4 mA h g^(-1) at 2 C after 200 cycles with a capacity retention of 95.24%)in Li@LCP-Cu||NCM811 coin cell can be achieved.Furthermore,the solid-state battery assembled with the hybrid anode,poly(vinylidene fluoride)(PVDF)-based polymer electrolyte and polyethylene oxide(PEO)interface functional layer also exhibits the best electrochemical and safety performance,which also proves that the Li@LCP-Cu anode has great potential for application in solid-state batteries.
基金supported by the National Natural Science Foundation of China (21603019 and 201503025)Program for the Hundred Talents Program of Chongqing University。
文摘Solid-state lithium-metal-batteries(SSLMBs)using garnet Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)as the solid electrolyte are expected to conquer the safety concerns of high energy Li batteries with organic liquid electrolytes owing to its nonflammable nature and good mechanical strength.However,the poor interfacial contact between the Li anode and LLZTO greatly restrains the practical applications of the electrolyte,because large polarization,dendritic Li formation and penetration can occur at the interfaces.Here,an effective method is proposed to improve the wettability of the LLZTO toward lithium and reduce the interfacial resistance by engineering universal lithiophilic interfacial layers.Thanks to the in-situ formed lithiophilic and ionic conductive Co/Li_(2)O interlayers,the symmetric Li/CoO-LLZTO/Li batteries present much smaller overpotential,ultra-low areal specific resistance(ASR,12.3 X cm^(2)),high critical current density(CCD,1.1 mA cm^(-2)),and outstanding cycling performance(1696 h at a current density of 0.3 mA cm^(-2))at 25℃.Besides,the solid-state Li/CoO-LLZTO/LFP cells deliver an excellent electrochemical performance with a high coulombic efficiency of~100%and a long cycling time over 185 times.Surprisingly,the high-voltage(4.6 V)solid state Li/CoO-LLZTO/Li_(1.4)Mn_(0.6)Ni_(0.2)Co_(0.2)O_(2.4)(LMNC622)batteries can also realize an ultra-high specific capacity(232.5 mAh g-1)under 0.1 C at 25℃.This work paves an effective way for practical applications of the dendrite-free SSLMBs.
基金Project supported by the National Natural Science Foundation of China(No.62025203)。
文摘Compared with traditional solid-state drives(SSDs),open-channel SSDs(OCSSDs)expose their internal physical layout and provide a host-based flash translation layer(FTL)that allows host-side software to control the internal operations such as garbage collection(GC)and input/output(I/O)scheduling.In this paper,we comprehensively survey research works built on OCSSDs in recent years.We show how they leverage the features of OCSSDs to achieve high throughput,low latency,long lifetime,strong performance isolation,and high resource utilization.We categorize these efforts into five groups based on their optimization methods:adaptive interface customizing,rich FTL co-designing,internal parallelism exploiting,rational I/O scheduling,and efficient GC processing.We discuss the strengths and weaknesses of these efforts and find that almost all these efforts face a dilemma between performance effectiveness and management complexity.We hope that this survey can provide fundamental knowledge to researchers who want to enter this field and further inspire new ideas for the development of OCSSDs.
基金This work was financially supported by the Basic Science Center Program of the National Natural Science Foundation of China(Grant No.52388201).
文摘Poly(vinylidene fluoride)(PVDF)-based polymer electrolytes(PEs)with good electrochemical performance and processability as well as low-cost advantage,have great potential applications in solid-state lithium(Li)metal batteries(SSLMBs).PVDF-based PEs are generally produced by employing a solution-casting approach with N,N-dimethylformamide(DMF)as the solvent,accompanied by the formation of[DMF-Li^(+)]complex,which facilitates the Li-ion transport.However,the residual DMF can react continuously with lithium(Li)metal,thereby deteriorating the interface layer in the middle of the PVDF-based PEs and Li anodes.Herein,we introduce propylene carbonate(PC)into the PVDF-based PEs to regulate the solvation structure and stabilize the interface layer between the PEs and Li anodes.PC accelerates the dissociation of lithium oxalyldifluoroborate(LiODFB).Consequently,“lithium propylene dicarbonate(LPDC)‒B-O”oligomer forms as the interfacial layer with high tenacity,homogeneity,and densification,which improves the interfacial contact and suppresses the continuous reaction between the residual DMF and Li anode.We further demonstrate that the PVDF-based PE prepared with DMF-PC mix-solvents shows improved room-temperature ionic conductivity(1.18×10^(-3) S/cm),enhanced stability against electrodes,and superior cycling performance in LiCoO_(2)-based SSLMBs(maintaining 84% of the initial discharge capacity after 300 cycles).