期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Solidification Microstructures of a Single-crystal Superalloy under Ultra-high Temperature Gradient Conditions
1
作者 Y.Murata M.Morinaga 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第1期25-31,共7页
The solidification microstructures and solute segregation of a newly developed hot corrosion resistant single-crystal Ni-base superalloy were investigated with a zone-melting and ultra-high thermal gradient unidirecti... The solidification microstructures and solute segregation of a newly developed hot corrosion resistant single-crystal Ni-base superalloy were investigated with a zone-melting and ultra-high thermal gradient unidirectional solidification apparatus.Compared with the microstructures solidified at conventional low thermal gradient conditions,the dendrite arm spacings,the interdendritic microporosity and γ/γ' eutectic,and the severity of solute segregation of the single-crystal superalloy solidified at ultra-high thermal gradient conditions were considerably reduced.It was shown that the microstructure solidified under ultra-high thermal gradient condition is ideal for the full exploitation of the excellent property potentials of single-crystal superalloys. 展开更多
关键词 single-crystal superalloy solidification microstructure temperature gradient
下载PDF
SOLIDIFICATION MICROSTRUCTURE AND FRACTURE MORPHOLOGY OF SiCp/ZA27 COMPOSITE
2
作者 Zhao Yutao Zhou Ming Department of Materials,Jiangsu University of Science and TechnologySun Guoxiong Southeast University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第1期86-90,共5页
Solidification microstructure and mechanical property are explored.Furthermore,tensile fracture and microstructure are analyzed by using SEM and JXA 840A electron probe.The results indicate that SiC particles in SiC... Solidification microstructure and mechanical property are explored.Furthermore,tensile fracture and microstructure are analyzed by using SEM and JXA 840A electron probe.The results indicate that SiC particles in SiCp/ZA27 composite are mainly distributed on interfaces or between dendrites and surrounded by primary α phase.The dendrite of α phase is fined by SiCp.The tensile strength at room temperature decreases with the increasing of SiCp addition.The tensile strength at elevated temperature increases with the addition of SiCp.The fracture of SiCp/ZA27 composites is the mixture of tough and brittle fracture.The carck is prone to extend along the interface and the region of dispersed shrinkage. 展开更多
关键词 SiCp/ZA27 composite solidification microstructure Fracture morphology
下载PDF
Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet 被引量:6
3
作者 Shaoning Geng Ping Jiang +2 位作者 Xinyu Shao Lingyu Guo Xuesong Gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第11期50-63,共14页
Understanding the behaviors of heat transfer and fluid flow in weld pool and their effects on the solidification microstructure are significant for performance improvement of laser welds.This paper develops a three-di... Understanding the behaviors of heat transfer and fluid flow in weld pool and their effects on the solidification microstructure are significant for performance improvement of laser welds.This paper develops a three-dimensional numerical model to understand the multi-physical processes such as heat transfer,melt convection and solidification behavior in full-penetration laser welding of thin 5083 aluminum sheet.Solidification parameters including temperature gradient G and solidification rate R,and their combined forms are evaluated to interpret solidification microstructure.The predicted weld dimensions and the microstructure morphology and scale agree well with experiments.Results indicate that heat conduction is the dominant mechanism of heat transfer in weld pool,and melt convection plays a critical role in microstructure scale.The mushy zone shape/size and solidification parameters can be modulated by changing process parameters.Dendritic structures form because of the low G/R value.The scale of dendritic structures can be reduced by increasing GR via decreasing heat input.The columnar to equiaxed transition is predicted quantitatively via the process related G^3/R.These findings illustrate how heat transfer and fluid flow affect the solidification parameters and hence the microstructure,and show how to improve microstructure by optimizing the process. 展开更多
关键词 Laser welding Heat transfer Fluid flow solidification microstructure ALUMINUM
原文传递
Microstructure Evolution during Solidification of AZ91D Magnesium Alloy in Semisolid 被引量:5
4
作者 Wuxiao WANG Bailing JIANG +2 位作者 Sen YUAN Wanqi JIE Guangyu YANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第3期311-314,共4页
The liquid quenching method was adopted to study the solidification morphology and microstructure of AZglD Mg alloy in semisolid. The results indicate that cooling rate has important effects upon the solidification st... The liquid quenching method was adopted to study the solidification morphology and microstructure of AZglD Mg alloy in semisolid. The results indicate that cooling rate has important effects upon the solidification structures. Under the cooling rate of liquid quenching, primary α-phase grows first by attaching on the original α grains, or independent nucleation and growth. The high cooling rate makes primary α-phase grow in "rags" or dendrite shape. Eutectic solidification is carried out in terms of both dissociated growth and symbiotic growth. The dissociated growth forms rough and large β-phase at grain boundaries, while symbiotic growth forms eutectic of laminar structure. The small liquid pool inside the original α-phase solidifies basically in the same way as that of intergranular liquid, but owing to less amount of liquid phase, the eutectic solidification is mainly carried out in the dissociated pattern. 展开更多
关键词 Magnesium alloy SEMISOLID Liquid quenching solidification pattern solidification microstructure
下载PDF
Experimental study and cellular automaton simulation on solidification microstructure of Mg-Gd-Y-Zr alloy 被引量:2
5
作者 Xu-Yang Wang Fei-Fan Wang +4 位作者 Ke-Yan Wu Xian-Fei Wang Lv Xiao Zhong-Quan Li Zhi-Qiang Han 《Rare Metals》 SCIE EI CAS CSCD 2021年第1期128-136,共9页
The solidification microstructure of Mg-Gd-YZr alloy was investigated via an experimental study and cellular automaton(CA)simulation.In this study,stepshaped castings were produced,and the temperature variation inside... The solidification microstructure of Mg-Gd-YZr alloy was investigated via an experimental study and cellular automaton(CA)simulation.In this study,stepshaped castings were produced,and the temperature variation inside the casting was recorded using thermocouples during the solidification process.The effects of the cooling rate and Zr content on the grain size of the Mg-Gd-Y-Zr alloy were studied.The results showed that the grain size decreased with an increase in the cooling rate and Zr content.Based on the experimental data,a quantitative model for calculating the heterogeneous nucleation rate was developed,and the model parameters were determined.The evolution of the solidification microstructure was simulated using the CA method,where the quantitative nucleation model was used and a solute partition ceoefficient was introduced to deal with the solute trapping in front of the solid-liquid(S/L)interface.The simulation results of the grain size were in good agreement with the experimental data.The simulation also showed that the fraction of the eutectics decreased with an increasing cooling rate in the range of 2.6-11.0℃·s^(-1),which was verified indirectly by the experimental data. 展开更多
关键词 solidification microstructure Mg-Gd-Y-Zr alloy Cooling rate Zr content NUCLEATION Cellular automaton
原文传递
Solidification microstructure characteristics of Ti–44Al–4Nb–2Cr–0.1B alloy under various cooling rates during mushy zone 被引量:1
6
作者 Peng Han Hong-Chao Kou +2 位作者 Jie-Ren Yang Guang Yang Jin-Shan Li 《Rare Metals》 SCIE EI CAS CSCD 2016年第1期35-41,共7页
Beta-solidifying TiAl alloy has great potential in the field of aero-industry as a cast alloy.In the present work,the influence of cooling rate during mushy zone on solidification behavior of Ti-44Al-4Nb-2Cr-0.1B allo... Beta-solidifying TiAl alloy has great potential in the field of aero-industry as a cast alloy.In the present work,the influence of cooling rate during mushy zone on solidification behavior of Ti-44Al-4Nb-2Cr-0.1B alloy was investigated.A vacuum induction heating device combining with temperature control system was used.The Ti-44Al-4Nb-2Cr-0.1B alloy solidified from superheated was melted to β phase with the cooling rates of 10,50,100,200,400 and 700 K·min^(-1),respectively.Results show that with the increase in cooling rate from 10 to 700 K·min^(-1),the colony size of α_2/γ lamella decreases from 1513 to48 urn and the solidification segregation significantly decreases.Also the content of residual B2 phase within α_2/γlamellar colony decreases with the increase in cooling rate.In addition,the alloy in local interdendritic regions would solidify in a hypo-peritectic way,which can be attributed to the solute redistribution and enrichment of Al element in solidification. 展开更多
关键词 β-solidifying TiAl alloy Cooling rate Mushyzone solidification microstructure
原文传递
Solidification microstructure of high borated stainless steels with rare earth and titanium additions
7
作者 Yong-Wang Li Hai-Tao Liu +5 位作者 Zhao-Jie Wang Zhi-Heng Zhang Wei-Ting Li Hui-Ying Shen Xiao-Ming Zhang Guo-Dong Wang 《Rare Metals》 SCIE EI CAS CSCD 2020年第12期1483-1491,共9页
To study the effects of rare earth(RE)and Ti on the solidification micros true ture of high borated stainless steels,1.6 wt%B stainless steel doped with RE and2.1 wt%B stainless steel doped with Ti were prepared by in... To study the effects of rare earth(RE)and Ti on the solidification micros true ture of high borated stainless steels,1.6 wt%B stainless steel doped with RE and2.1 wt%B stainless steel doped with Ti were prepared by ingot casting,respectively.The solidification microstructure of researched steels was characterized in detail.The modification mechanism was clarified based on the heterogeneous nucleation theory and the thermodynamic calculation.The solidification microstructure of 1.6 wt%B and 2.1 wt%B stainless steels was characterized by the continuous and network-like eutectic borides around the matrix grains.It was found that the fine RE compounds could act as the heterogeneous nuclei for both borides and austenite during solidification.Thus,the eutectic borides were more dispersed in the modified steel.Moreover,lots of fine‘eutectic cells’were formed in the matrix regions.As a result of the preferential formation of TiB2 during solidification,the amount of the eutectic borides in the steel modified with Ti was significantly decreased.Besides,the continuity of the eutectic borides network was weakened.In a word,the present work provides a promising method to modify the solidification microstructure for high borated stainless steels. 展开更多
关键词 Borated stainless steels solidification microstructure Rare earth TITANIUM
原文传递
NEAR RAPID DIRECTIONAL SOLIDIFICATION AND ITS SUPERFINE MICROSTRUCTURE 被引量:2
8
作者 H.Z. Fu X.G. Gen J.G. Li and J.Zhang(State Key Lab.of Solidification Processing, Northwestern Polytechnical University,Xi’an 710072,China ) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第6期497-502,共6页
This paper briefly reviews the recent research on the near rapid directional solidification and microstructure superfining. The morphology transitions and the corresponding mechanical properties are presented. The cri... This paper briefly reviews the recent research on the near rapid directional solidification and microstructure superfining. The morphology transitions and the corresponding mechanical properties are presented. The critical velocities relevant to the morphology transitions are comprehensively given. Meanwhile the solidification characteristics near absolute stability limit are studied.It can be clearly seen that the superfine microstructures possess extremely better properties compared with the conventional microstructures. 展开更多
关键词 near rapid directional solidification superfine microstructure morphology transition mechanical property
下载PDF
MICROSTRUCTURE AND MACROSEGREGATION OF Al-7%Si ALLOY SOLIDIFIED UNDER COMPLEX EFFECTS OF ELECTROMAGNETIC AND CENTRIFUGAL FORCES 被引量:2
9
作者 Y.F. Zhu W.Q. Zhang +1 位作者 Y.S. Yang Q.M. Liu and Z.Q. Hu (State Key Lab. of RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015,Chilla) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1997年第2期105-114,共10页
Macrosegregations and microstructures of Al-7%Si alloy solidified under complex of fects of magnetic field and centrifugal forces are studied by means of a set of selfdesigned electromagnetic centrifugal casting (EMC... Macrosegregations and microstructures of Al-7%Si alloy solidified under complex of fects of magnetic field and centrifugal forces are studied by means of a set of selfdesigned electromagnetic centrifugal casting (EMCC) device. It is shown that electromagnetic field (EMF) has an important effect on the macrosegregation of centrifugal casting specimen of Al-7%Si alloy in two respects: one is that there exists always a kind of convection in the liquid in front of the S/L interface caused by effect ofthe electromagnetic force; the other is that different atomic clusters of solidparticles with different physical characteristics are subjected to quite different electromagnetic (Lorentz) force. Therefore, their movements get changed. In addition, the formation process of a complex band structure consisting of primary α-Al dendrites and (α-Al+β-Si) eutectics in hypoeutectic Al-Si alloys during EMCC and the effect of EMF are discussed. 展开更多
关键词 electromagnetic field (EMF) centrifugal force Al-7%Si alloy MACROSEGREGATION solidification microstructure convection
下载PDF
Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy 被引量:2
10
作者 张庆宇 孙东科 +2 位作者 章顺虎 王辉 朱鸣芳 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期567-575,共9页
We simulate the evolution of hydrogen concentration and gas pore formation as equiaxed dendrites grow during solidification of a hypoeutectic aluminum-silicon(Al-Si)alloy.The applied lattice Boltzmann-cellular automat... We simulate the evolution of hydrogen concentration and gas pore formation as equiaxed dendrites grow during solidification of a hypoeutectic aluminum-silicon(Al-Si)alloy.The applied lattice Boltzmann-cellular automaton-finite difference model incorporates the physical mechanisms of solute and hydrogen partitioning on the solid/liquid interface,as well as the transports of solute and hydrogen.After the quantitative validation by the simulation of capillary intrusion,the model is utilized to investigate the growth of the equiaxed dendrites and hydrogen porosity formation for an Al-(5 wt.%)Si alloy under different solidification conditions.The simulation data reveal that the gas pores favorably nucleate in the corners surrounded by the nearby dendrite arms.Then,the gas pores grow in a competitive mode.With the cooling rate increasing,the competition among different growing gas pores is found to be hindered,which accordingly increases the pore number density in the final solidification microstructure.In the late solidification stage,even though the solid fraction is increasing,the mean concentration of hydrogen in the residue melt tends to be constant,corresponding to a dynamic equilibrium state of hydrogen concentration in liquid.As the cooling rate increases or the initial hydrogen concentration decreases,the temperature of gas pore nucleation,the porosity fraction,and the mean porosity size decrease,whilst the mean hydrogen concentration in liquid increases in the late solidification stage.The simulated data present identical trends with the experimental results reported in literature. 展开更多
关键词 MICROPOROSITY solidification microstructure modeling lattice Boltzmann method
下载PDF
Effect of boron addition on the microstructure and stress-rupture properties of directionally solidified superalloys 被引量:4
11
作者 Bao-ping Wu Lin-han Li +5 位作者 Jian-tao Wu Zhen Wang Yan-bin Wang Xing-fu Chen Jian-xin Dong Jun-tao Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1120-1126,共7页
This study is focused on the effect of boron addition, in the range of 0.0007wt% to 0.03wt%, on the microstructure and stress-rupture properties of a directionally solidified superalloy. With increasing boron content ... This study is focused on the effect of boron addition, in the range of 0.0007wt% to 0.03wt%, on the microstructure and stress-rupture properties of a directionally solidified superalloy. With increasing boron content in the as-cast alloys, there is an increase in the fraction of the γ′/γ eutectic and block borides precipitate around the γ′/γ eutectic. At a high boron content of 0.03wt%, there is precipitation of lamellar borides. Upon heat treatment, fine block borides tend to precipitate at grain boundaries with increasing boron content. Overall, the rupture life of the directionally solidified superalloy is significantly improved with the addition of nominal content of boron. However, the rupture life decreases when the boron content exceeds 0.03wt%. 展开更多
关键词 superalloys directional solidification microstructure boron stress-rupture properties
下载PDF
Microstructure and Fractural Morphology of Cobalt-based Alloy Laser Cladding 被引量:1
12
作者 陈浩 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第3期30-32,共3页
The solidification features,micro segregation,and fracture characteristics of cobalt based alloy on the substrate of 20CrMo steel by laser cladding were studied by using electron microscopy.Experimental results show... The solidification features,micro segregation,and fracture characteristics of cobalt based alloy on the substrate of 20CrMo steel by laser cladding were studied by using electron microscopy.Experimental results show that the fine columnar grains and cellular dendrite grains are obtained which are perpendicular to the coating/substrate interface;the primary arms are straight while the side branches are degenerated;the microstructure consists of primary face centered cubic (fcc) Co dendrites and a network of Cr enriched eutectic M23C6 (M=Cr,W,Fe) carbides;the micro segregation is severe for the rapid heating and cooling of laser cladding;the typical brittle intergranular fracture occurs in cobalt based laser cladding layer. 展开更多
关键词 laser cladding Cobalt based alloy solidification microstructure micro segregation FRACTURE
下载PDF
Microstructure of AISI 304 stainless steel strips produced by a twin-roll caster 被引量:1
13
作者 Chenxi Ji Jiongmmg Zhang +3 位作者 Fuxiang Huang Xinhua Wang Yuan Fang Yan Yu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期678-682,共5页
By optical inspection of macro-etched metallography and electron back-scattered diffraction (EBSD) mapping, this paper analyzed the microstructure of austenitic stainless steel strips produced with an equal-diameter... By optical inspection of macro-etched metallography and electron back-scattered diffraction (EBSD) mapping, this paper analyzed the microstructure of austenitic stainless steel strips produced with an equal-diameter twin-roll strip caster. The results indicate that the microstructure of the strips includes two columnar zones with highly compact dendrites and one equiaxed zone. The characteristics, such as grain size and growing direction of columnar grains and equiaxed grains, were investigated. An additional transitional area with many finer grains between the columnar zone and the equiaxed zone was found. As shown in EBSD analysis, small angle boundaries exist both in the columnar zone and the equiaxed zone, although they are especially more in the transitional area. Additionally, some 〈111〉 twin boundaries were found in the microstructure of the strips. 展开更多
关键词 twin-roll strip casting austenitic stainless steel solidification microstructure electron back-scattered diffraction (EBSD) mapping
下载PDF
Microstructure and mechanical properties of the micrograined hypoeutectic Zn–Mg alloy 被引量:3
14
作者 J. Kubasek D.Vojtech +2 位作者 I.Pospisilova A.Michalcova J.Maixner 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第10期1167-1176,共10页
A biodegradable Zn alloy, Zn-1.6Mg, with the potential medical applications as a promising coating material for steel components was studied in this work. The alloy was prepared by three different procedures: gravity... A biodegradable Zn alloy, Zn-1.6Mg, with the potential medical applications as a promising coating material for steel components was studied in this work. The alloy was prepared by three different procedures: gravity casting, hot extrusion, and a combination of rapid solidification and hot extrusion. The samples prepared were characterized by light microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. Vickers hardness, tensile, and compressive tests were performed to determine the samples' mechanical properties. Structural examination reveals that the average grain sizes of samples prepared by gravity casting, hot extrusion, and rapid solidification followed by hot extrusion are 35.0, 9.7, and 2.1 μm, respectively. The micrograined sample with the finest grain size exhibits the highest hardness(Hv = 122 MPa), compressive yield strength(382 MPa), tensile yield strength(332 MPa), ultimate tensile strength(370 MPa), and elongation(9%). This sample also demonstrates the lowest work hardening in tension and temporary softening in compression among the prepared samples. The mechanical behavior of the samples is discussed in relation to the structural characteristics, Hall-Petch relationship, and deformation mechanisms in fine-grained hexagonal-close-packed metals. 展开更多
关键词 zinc magnesium alloys extrusion rapid solidification microstructure mechanical properties
下载PDF
EFFECT OF POWDER SIZE ON MICROSTRUCTURE AND PROPERTIES OF RAPIDLY SOLIDIFIED Al-Li-Mg-Zr ALLOY
15
作者 YU Guifu Beijing Institute of Aeronautical Materials,Beijing,ChinaHE Junfang Institute of Metal Research,Academia Sinica,Shenyang,ChinaLI Qingchun Harbin Institute of Technology Harbin,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第4期256-260,共5页
The microstructure and properties of the rapidly solidified Al-Li-Mg-Zr alloy,in relation to the particle size of supersonic atomizing powder,have been investigated.The finer the size and the structure of powder,the h... The microstructure and properties of the rapidly solidified Al-Li-Mg-Zr alloy,in relation to the particle size of supersonic atomizing powder,have been investigated.The finer the size and the structure of powder,the higher the strength of the alloy.While the overfine powder may worsen plasticity of the alloy.The proper powder seems to be sized 40—100um. 展开更多
关键词 Al-Li alloy rapid solidification microstructure property
下载PDF
PREPARATION OF Al-Si INGOTS WITH FULL EUTECTIC-LIKE MICROSTRUCTURE AT LOW COOLING RATE
16
作者 WEI Pengyi FU Hengzhi(State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an 710072,China) W.REIF(Institute fuer Metallforshung-Metallkunde,Technische Universitaete Berlin,Strasse des 17 Juni 135,D-1000 Berlin 12,Ger 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第1期49-55,共7页
A self-designed computer-aided solidification simulation system for large-size ingots was employed to determine the eutectic coupled-zone of Al-(7-14 wt%) Si alloys at low freezing rate with a temperature gradient of ... A self-designed computer-aided solidification simulation system for large-size ingots was employed to determine the eutectic coupled-zone of Al-(7-14 wt%) Si alloys at low freezing rate with a temperature gradient of liquid on solidification interface tower than 20 K cm ̄(-1). Experimental parameters for the formation of a fully eutectic microstructure in a dia.38×70 mm ingot have been successfully obtained under various conditions for Al-(11.3 -13.0 wt%) Si alloys.Eutectic coupled growth charactersitics under this condition was also discussed. 展开更多
关键词 Al-Si alloy eutectic-like microstructure solidification simulation coupled-zone
下载PDF
MICROSTRUCTURE AND TENSILE PROPERTIES OF RAPIDLY SOLIDIFIED Al-3.8Li-0.8Mg-0.4Cu-0.13Zr ALLOY PREPARED BY SPRAY DEPOSITION
17
作者 CUI Chengsong FAN Hongbo +2 位作者 SHEN Jun JIANG Zuling LI Qingchun(Department of Metallic Materials and Technology,Harbin Institute of Technology,Harbin 150001,China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第1期37-43,共7页
Al-3.8Li-0.8Mg-0.4Cu-0.13Zr alloy was prepared by a novel spray deposition technique,and its microstructure and tensile properties after various aging treatments have been investigated. The experimental results show t... Al-3.8Li-0.8Mg-0.4Cu-0.13Zr alloy was prepared by a novel spray deposition technique,and its microstructure and tensile properties after various aging treatments have been investigated. The experimental results show that the alloy,under study has very fine equiaxed grains about 5-20μm in diameter and a relative density of(94±3)% on average.Grains in the as-extruded alloy are'brick-like'in morphology,and few oxide particles have been found al the grain boundaries.δ' particles with irregular shape and'δ'-β''coprecipitates appear in the aged alloy.The coarsening of δ'particles is fast,and the distance between the particles does not widen so obviously as that of IM(ingot-casting method) alloys with increasing aging time.The spray deposited Al-Li alloy.reaches the peak-aged condition in a short time(10 h al 190℃) when the best properties(σb=534 MPa, σ0.2=480 MPa.δ=10%) are obtained.Compared with RSPM(rapid solidification processing method)Al-Li alloy,the ductility of the tested alloy has been obviously.enhanced while a comparable tensile strength is maintained. 展开更多
关键词 spray deposition rapid solidification Al-Li alloy microstructure tensile property
下载PDF
Study on Microstructure and Thermal Stability Behavior of Rapidly Solidified Al-Fe-Ce Alloy
18
作者 Chen Yiqing,Su Yong,Ding Houfu and Zheng Yuchun (Department of Materials Science & Technology,Hefei University of Technology,Hefei 230009) 《Rare Metals》 SCIE EI CAS CSCD 2000年第3期178-,共4页
Rapidly solidified Al 8Fe 4Ce alloy was prepared by melt spinning.As quenched and as annealed microstructures were studied by TEM and energy dispersive spectrum analysis.The microhardness of the alloy at different... Rapidly solidified Al 8Fe 4Ce alloy was prepared by melt spinning.As quenched and as annealed microstructures were studied by TEM and energy dispersive spectrum analysis.The microhardness of the alloy at different annealing temperature was measured.The results obtained indicated that as quenched microstructure varied with different cooling rates.The microstructure annealed at 300℃ was much the same as that of the as quenched.The dispersed phases at grain boundary of the microstructure annealed at 400℃ became coarsening.After annealing at 450℃ for 2 hours,the primary phase and the intercellular dispersed phases,metastable phase Al 6Fe and Al 20 Fe 5Ce respectively,coarsened further.The soften temperature was deduced at over 300℃ by measuring microhardness. 展开更多
关键词 Rapid solidification Al Fe Ce alloy microstructure Annealed microstructure Microhardness
下载PDF
Particle size dependence of the microsegregation and microstructure in the atomized Ni-based superalloy powders:Theoretical and experimental study
19
作者 Jikang Li Mingsheng Yang +4 位作者 Yunfei Cai Yuanyuan Zhang Qingshuai Feng Jiantao Liu Tong Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期54-65,共12页
The microstructure and microsegregation of atomized powder,which depend on their sizes,are of great importance to the mechanical properties of the consolidated bulk materials.Therefore,it is necessary to reveal the re... The microstructure and microsegregation of atomized powder,which depend on their sizes,are of great importance to the mechanical properties of the consolidated bulk materials.Therefore,it is necessary to reveal the relationship between particle size and powder attributes.The effects of particle size on the so-lidification characterization of the atomized Ni-based superalloy powders were studied via finite element simulation.Based on the simulations,a model was developed to predict the microsegregation and mi-crostructure of atomized powders with different sizes and study the influence of thermal history on the powder attributes during the atomization processes.The radiation heat transfer and temperature gradi-ent within the rapid solidification alloy powders were taken into account in this model.For validating the accuracy of the model,the predictions of the present model were compared with the microsegregation and microstructure of the specific size powder close to the screen mesh size.The results showed that mi-crostructure depended primarily on the temperature gradient within the powder,while the solidification rate had a more significant effect on the microsegregation.The model predicted microstructure features in agreement with the experiment,and for microsegregation,the deviations of prediction for most ele-ments were less than 10%.This work provides a new model to precisely predict the microsegregation and microstructure of the atomized alloy powders and sets a foundation to control the powder features for various engineering applications. 展开更多
关键词 Particle size solidification microstructure MICROSEGREGATION Numerical simulation
原文传递
Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys 被引量:7
20
作者 Mengdan Hu Taotao Wang +1 位作者 Hui Fang Mingfang Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第17期76-85,共10页
A two-dimensional(2-D)multi-component and multi-phase cellular automaton(CA)model coupled with the Calphad method and finite difference method(FDM)is proposed to simulate the gas pore formation and microstructures in ... A two-dimensional(2-D)multi-component and multi-phase cellular automaton(CA)model coupled with the Calphad method and finite difference method(FDM)is proposed to simulate the gas pore formation and microstructures in solidification process of hypoeutectic Al-Si-Mg alloys.In this model,the pore growth,and dendritic and eutectic solidification are simulated using a CA technique.To achieve the equilibrium among multiple phases during ternary Al-based alloy solidification,the phase transition thermodynamics and kinetics are evaluated by adopting the Calphad method.The diffusion equations of hydrogen and two solutes are solved by FDM.The developed CA-FDM coupled model can be used for simulating the evolution of gas microporosity and microstructures,involving dendrites and irregular binary and ternary eutectics,of ternary hypoeutectic Al-Si-Mg alloys.It has the capability of reproducing the interactions between the hydrogen microporosity formation and the growth of dendrites and eutectics,the competitive growth among the growing gas pores of different sizes,together with the time-evolving concentration fields of hydrogen and solutes.The simulated morphology of gas pore and microstructure has a good agreement with the experimental observation.The influences of the initial hydrogen concentration and cooling rate on the microporosity formation are investigated.It is found that the main portion of porosity formation occurs in the eutectic solidification stage through analyzing the profiles of porosity percentage and solid fraction varying with solidification time.The varying features of simulated porosity percentage,the maximum and average pores radii indicate that increasing initial hydrogen concentration promotes the formation of higher final porosity percentage and larger pores,while the size of gas pores will significantly reduce with increasing cooling rate,leading to a lower final porosity percentage. 展开更多
关键词 POROSITY solidification microstructures Ternary Al-Si based alloys DIFFUSION Cellular automaton
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部