期刊文献+
共找到5,342篇文章
< 1 2 250 >
每页显示 20 50 100
基于网络度量元的Solidity智能合约缺陷预测
1
作者 李显伟 潘伟丰 +2 位作者 王家乐 潘云 袁成祥 《计算机应用研究》 CSCD 北大核心 2023年第12期3545-3550,共6页
针对现有智能合约缺陷预测方法未考虑合约代码内部结构对缺陷产生的影响的不足,提出了一种基于网络度量元的Solidity智能合约缺陷预测方法。首先,通过Solidity-Antlr4工具构建Solidity智能合约的抽象语法树(abstract syntax tree, AST)... 针对现有智能合约缺陷预测方法未考虑合约代码内部结构对缺陷产生的影响的不足,提出了一种基于网络度量元的Solidity智能合约缺陷预测方法。首先,通过Solidity-Antlr4工具构建Solidity智能合约的抽象语法树(abstract syntax tree, AST);其次,根据抽象语法树构建合约网络,网络中的节点代表函数和属性,边代表函数间的调用关系和函数对属性的操作关系;然后,引入复杂网络领域的知识,构建了一套针对Solidity智能合约的网络度量元;最后,基于多种回归模型和分类模型构建智能合约缺陷预测模型,进而比较不同类型的度量元在Solidity智能合约缺陷预测方面的性能。数据实验表明,结合了网络度量元的缺陷预测模型的预测性能比相应没有结合网络度量元的模型要好。 展开更多
关键词 智能合约 软件缺陷预测 网络度量元集 solidity 抽象语法树
下载PDF
基于Solidity的低代码以太坊微博系统的设计与实现
2
作者 胡娟 汤海林 《电脑知识与技术》 2023年第24期30-33,共4页
文章介绍了基于Solidity的低代码区块链以太坊微博系统的设计与实现。传统微博系统存在中心化管理、数据安全性和透明性不足等问题。为了解决这些问题,笔者开发了基于区块链技术的微博系统。该系统利用智能合约和Solidity编程语言实现... 文章介绍了基于Solidity的低代码区块链以太坊微博系统的设计与实现。传统微博系统存在中心化管理、数据安全性和透明性不足等问题。为了解决这些问题,笔者开发了基于区块链技术的微博系统。该系统利用智能合约和Solidity编程语言实现了去中心化的微博管理,并提供了简化的用户界面和交互。系统具备基本的微博功能,如文章发布、评论和点赞。通过实现这个低代码区块链微博系统,读者能够更好地理解Solidity和以太坊的应用,并为开发类似的应用程序提供参考。 展开更多
关键词 区块链 solidity 低代码 微博系统 以太坊
下载PDF
基于软件度量的Solidity智能合约缺陷预测方法 被引量:7
3
作者 杨慧文 崔展齐 +3 位作者 陈翔 贾明华 郑丽伟 刘建宾 《软件学报》 EI CSCD 北大核心 2022年第5期1587-1611,共25页
随着区块链技术的兴起,智能合约安全问题被越来越多的研究者和企业重视,目前已有一些针对智能合约缺陷检测技术的研究.软件缺陷预测技术是软件缺陷检测技术的有效补充,能够优化测试资源分配,提高软件测试效率.然而,目前还没有针对智能... 随着区块链技术的兴起,智能合约安全问题被越来越多的研究者和企业重视,目前已有一些针对智能合约缺陷检测技术的研究.软件缺陷预测技术是软件缺陷检测技术的有效补充,能够优化测试资源分配,提高软件测试效率.然而,目前还没有针对智能合约的软件缺陷预测研究.针对这一问题,提出了面向Solidity智能合约的缺陷预测方法.首先,设计了一组针对Solidity智能合约特有的变量、函数、结构和Solidity语言特性的度量元集(smart contract-Solidity,SC-Sol度量元集),并将其与重点考虑面向对象特征的度量元集(code complexity and features of object-oriented program,COOP度量元集)组合为COOP-SC-Sol度量元集.然后,从Solidity智能合约代码中提取相关度量元信息,并结合缺陷检测结果,构建Solidity智能合约缺陷数据集.在此基础上,应用了7种回归模型和6种分类模型进行Solidity智能合约的缺陷预测,以验证不同度量元集和不同模型在缺陷数量和倾向性预测上的性能差异.实验结果表明,相对于COOP度量元集,COOP-SC-Sol能够让缺陷预测模型的F1-score指标提升8%.此外,进一步研究了智能合约缺陷预测中的类不平衡问题,实验结果表明,通过采样技术对数据集进行预处理能够提升缺陷预测模型的性能,其中随机欠采样技术能够使模型的F1-score指标提升9%.在特定缺陷倾向性预测问题上,模型的预测性能受到数据集类不平衡的影响,在缺陷模块百分比大于10%的数据集中能取得较好的预测性能. 展开更多
关键词 软件缺陷预测 缺陷数量预测 缺陷倾向性预测 智能合约 solidity
下载PDF
Effects of Rotor Solidity on the Performance of Impulse Turbine for OWC Wave Energy Converter 被引量:4
4
作者 刘臻 赵环宇 崔莹 《China Ocean Engineering》 SCIE EI CSCD 2015年第5期663-672,共10页
Impulse turbine, working as a typical self-rectifying turbine, is recently utilized for the oscillating water column(OWC) wave energy converters, which can rotate in the same direction under the bi-directional air f... Impulse turbine, working as a typical self-rectifying turbine, is recently utilized for the oscillating water column(OWC) wave energy converters, which can rotate in the same direction under the bi-directional air flows. A numerical model established in Fluent is validated by the corresponding experimental results. The flow fields, pressure distribution and dimensionless evaluating coefficients can be calculated and analyzed. Effects of the rotor solidity varying with the change of blade number are investigated and the suitable solidity value is recommended for different flow coefficients. 展开更多
关键词 wave energy oscillating water column impulse turbine rotor solidity operating performance numerical simulation
下载PDF
Dynamic Circulation Control for a Vertical Axis Wind Turbine using Virtual Solidity Matching 被引量:1
5
作者 Jay P. Wilhelm Andrew C. Nix +2 位作者 Chad C. Panther Wade W. Huebsch James E. Smith 《Smart Grid and Renewable Energy》 2017年第4期99-113,共15页
Vertical Axis Wind Turbines (VAWTs) with fixed pitch blades have a limited power capture performance envelope as the Tip Speed Ratio (TSR) changes. Circulation Control (CC) has been proposed and simulated to possibly ... Vertical Axis Wind Turbines (VAWTs) with fixed pitch blades have a limited power capture performance envelope as the Tip Speed Ratio (TSR) changes. Circulation Control (CC) has been proposed and simulated to possibly increase power capture of a VAWT using constant CC jet momentum, but a practical method of minimizing CC usage has yet to be explored. In addition, VAWTs are typically limited in power capture performance either by a maximum peak at a small set of TSR or wide operating TSR at fractions of the peak performance based on the design solidity. Both the reduced jet usage and solidity limitation were addressed by developing a method of dynamically using CC to perform a virtual solidity change. The developed method described within this work used CC to change blade aerodynamics to specifically match a maximum performing static solidity or wake shape at a given TSR. Simulation results using an existing aerodynamics model indicated a significant reduction in the re-quired CC jet momentum compared to a constant CC system along with control over power capture for a CC-VAWT. 展开更多
关键词 CIRCULATION CONTROL Vertical Axis Wind TURBINE VAWT Flow CONTROL solidity MATCHING
下载PDF
Effect of Impeller Solidity on the Generating Performance for Solar Power Generation
6
作者 Jia Liu Rui Tian Jing Nie 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第4期308-318,共11页
According to current solar power research,both the generating unit’s minimum start-up speed and power generation system’s minimum flow rate for operation decrease with the increase in the impeller solidity.Ideally,a... According to current solar power research,both the generating unit’s minimum start-up speed and power generation system’s minimum flow rate for operation decrease with the increase in the impeller solidity.Ideally,a high solidity should be achieved,as this translates more power for a solar power system in the start-up and shut-down cycles.However,increasing the number of blades does not increase the impeller solidity;therefore,there is an optimal number of blades needed to achieve the preferred solidity.This paper begins by selecting the blade airfoil and then performs a theoretical analysis based on the relationship between the blade number and chord length.Experiments are conducted to measure the starting and stopping wind speeds and power characteristics for different numbers of blades.The results show that a maximum impeller solidity of 0.2862 is achieved,as well as the minimum flow speed at the start-up,and the maintenance of the solar chimney power generation system is optimized when there are four blades. 展开更多
关键词 Blade number impeller solidity solar chimney power generation
下载PDF
Sino-Russian Strategic Cooperative Partnership: Heading for Road of Solidity
7
作者 赵龙庚 《Contemporary International Relations》 1999年第5期10-18,共9页
Since the independence of Russia, Sino-Russian relations have been develop-ing all along in a progressive momentum. At present, the two countrieshave established the "21st century-oriented strategic cooperative p... Since the independence of Russia, Sino-Russian relations have been develop-ing all along in a progressive momentum. At present, the two countrieshave established the "21st century-oriented strategic cooperative partnership of e-quality and mutual trust". Serving the basic interests of both sides with solid po-litical basis, the state relationship of this new type has proved to be the bestchoice of the Chinese and Russian people for the further development of bilateralties in the 21st century. Its major characteristics are as follows: A. Strategic cooperative partnership is established on the basis of the com-prehensive and gradual development of the Sino-Russian relations. 展开更多
关键词 Sino-Russian Strategic Cooperative Partnership Heading for Road of solidity
下载PDF
Skin supersoliditymatters the performance and functionality of water droplets
8
作者 Chang Q.Sun Yong Zhou +1 位作者 Hengxin Fang Biao Wang 《Droplet》 EI CAS 2024年第4期1-9,共9页
Even more fascinating than its bulk parent,a water droplet possesses extraordinary catalytic and hydro-voltaic capability,elastic adaptivity,hydrophobicity,sensitivity,thermal stability,etc.,but the underlying mechani... Even more fascinating than its bulk parent,a water droplet possesses extraordinary catalytic and hydro-voltaic capability,elastic adaptivity,hydrophobicity,sensitivity,thermal stability,etc.,but the underlying mechanism is still elusive.We emphasize herewith that the H‒O bond follows the universal bond order‒length‒strength cor-relation and nonbonding electron polarization regulation and the hydrogen bond cooperativity and polarizability notion regulates the performance of the coupling hydrogen bond(O:H‒O).Computational and spectrometric evidence consistently shows that molecular undercoordination shortens the intramolecular H‒O bond by up to 10%while lengthening the intermolecular O:H nonbond by 20%cooperatively with an association of electron polarization,making the 0.3-nm thick droplet skin of a supersolid phase of self-electrification.The supersolid skin dictates the performance and functionality of the droplet in chemical,dielectric,electrical,mechanical,optical,and thermal properties as well as the transport dynamics of electrons and phonons.The amplification of these findings could deepen our insight into the undercoordi-nated aqueous systems,including bubbles and molecular clusters,and promote deep engineering of water and ice. 展开更多
关键词 PERFORMANCE SOLID BONDING
原文传递
基于多特征融合的智能合约缺陷检测方法
9
作者 王奕丰 曾诚 +2 位作者 全擎宇 王娇然 何鹏 《计算机工程》 CAS CSCD 北大核心 2024年第8期133-141,共9页
智能合约是区块链技术最成功的应用之一,随着其广泛应用,智能合约的安全问题也引起了研究人员的关注。尽管已有一些针对智能合约缺陷检测的研究,但对于智能合约代码特征的挖掘还不充分。提出一种采用多特征融合方式的智能合约缺陷检测... 智能合约是区块链技术最成功的应用之一,随着其广泛应用,智能合约的安全问题也引起了研究人员的关注。尽管已有一些针对智能合约缺陷检测的研究,但对于智能合约代码特征的挖掘还不充分。提出一种采用多特征融合方式的智能合约缺陷检测方法。首先,对智能合约代码进行预处理,其中包括颜色标记、词汇提取、ASCII字符转换以及合约之间继承关系的提取;然后,将颜色标记、词汇提取、ASCII字符转换得到的处理信息输入到由BERT、卷积神经网络(CNN)以及双向长短期记忆(BiLSTM)网络构建的融合模型中进行特征提取,同时将合约之间的继承关系信息输入node2vec随机游走算法,以获得合约关系的特征向量;最后,将所有特征向量连接并输入分类器进行缺陷分类。使用真实的Solidity智能合约数据集对该方法进行验证,实验结果表明,相比其他模型,所提多特征融合模型在F1值实现了6%~12%的改进,在准确度方面实现了4%~11%的提升,该方法能够更好地挖掘智能合约代码的深层特征,提高缺陷检测性能,对智能合约的安全性具有一定的应用价值。 展开更多
关键词 区块链 智能合约 solidity语言 多特征 缺陷检测
下载PDF
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study 被引量:2
10
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
下载PDF
A defective iron-based perovskite cathode for high-performance IT-SOFCs:Tailoring the oxygen vacancies using Nb/Ta co-doping 被引量:2
11
作者 Bayu Admasu Beshiwork Xinyu Wan +6 位作者 Min Xu Haoran Guo Birkneh Sirak Teketel Yu Chen Jun Song Chen Tingshuai Li Enrico Traversa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期306-316,I0008,共12页
The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable ... The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable cathode material for IT-SOFCs is designed based on density functional theory(DFT)calculations by co-doping with Nb and Ta the B-site of the SrFeO_(3-δ)perovskite oxide.The DFT calculations suggest that Nb/Ta co-doping can regulate the energy band of the parent SrFeO_(3-δ)and help electron transfer.In symmetrical cells,such cathode with a SrFe_(0.8)Nb_(0.1)Ta_(0.1)O_(3-δ)(SFNT)detailed formula achieves a low cathode polarization resistance of 0.147Ωcm^(2) at 650℃.Electron spin resonance(ESR)and X-ray photoelectron spectroscopy(XPS)analysis confirm that the co-doping of Nb/Ta in SrFeO_(3-δ)B-site increases the balanced concentration of oxygen vacancies,enhancing the electrochemical performance when compared to 20 mol%Nb single-doped perovskite oxide.The cathode button cell with NiSDC|SDC|SFNT configuration achieves an outstanding peak power density of 1.3 W cm^(-2)at 650℃.Moreover,the button cell shows durability for 110 h under 0.65 V at 600℃ using wet H_(2) as fuel. 展开更多
关键词 Solid oxide fuel cell CATHODE Oxygen reduction reaction Power density DFT calculation
下载PDF
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries 被引量:2
12
作者 Yongbiao Mu Shixiang Yu +12 位作者 Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
13
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
下载PDF
Lignin-derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance 被引量:1
14
作者 Jingqiang Zheng Yulun Wu +6 位作者 Chaohong Guan Danjun Wang Yanqing Lai Jie Li Fuhua Yang Simin Li Zhian Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期235-244,共10页
Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a hi... Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance. 展开更多
关键词 hard carbon LIGNIN SODIUM components sodium-ion storage SOLID ELECTROLYTE INTERPHASE
下载PDF
Solid Bi_(2)O_(3)-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO_(2) 被引量:1
15
作者 Xiaoyan Wang Safeer Jan +1 位作者 Zhiyong Wang Xianbo Jin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期803-811,共9页
CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,met... CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction. 展开更多
关键词 BISMUTH carbon dioxide ELECTROCATALYSIS FORMATE solid electroreduction
下载PDF
Advancements,strategies,and prospects of solid oxide electrolysis cells(SOECs):Towards enhanced performance and large-scale sustainable hydrogen production 被引量:1
16
作者 Amina Lahrichi Youness El Issmaeli +1 位作者 Shankara S.Kalanur Bruno G.Pollet 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期688-715,共28页
Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scal... Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scale hydrogen production.In SOEC technology,the application of innovative fabrication tech-niques,doping strategies,and advanced materials has enhanced the performance and durability of these systems,although degradation challenges persist,implicating the prime focus for future advancements.Here we provide in-depth analysis of the recent developments in SOEC technology,including Oxygen-SOECs,Proton-SOECs,and Hybrid-SOECs.Specifically,Hybrid-SOECs,with their mixed ionic conducting electrolytes,demonstrate superior efficiency and the concurrent production of hydrogen and oxygen.Coupled with the capacity to harness waste heat,these advancements in SOEC technology present signif-icant promise for pilot-scale applications in industries.The review also highlights remarkable achieve-ments and potential reductions in capital expenditure for future SOEC systems,while elaborating on the micro and macro aspects of sOECs with an emphasis on ongoing research for optimization and scal-ability.It concludes with the potential of SOEC technology to meet various industrial energy needs and its significant contribution considering the key research priorities to tackle the global energy demands,ful-fillment,and decarbonization efforts. 展开更多
关键词 Solid oxide electrolysis cells Proton-SOECs Oxygen-SoECs Hybrid-SOECs Intermediate-high temperature electrolysers Hydrogenproduction
下载PDF
Electrolyte Design for Low‑Temperature Li‑Metal Batteries:Challenges and Prospects 被引量:1
17
作者 Siyu Sun Kehan Wang +3 位作者 Zhanglian Hong Mingjia Zhi Kai Zhang Jijian Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期365-382,共18页
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ... Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries. 展开更多
关键词 Solid electrolyte interphase Li metal Low temperature Electrolyte design BATTERIES
下载PDF
Challenges in Li-ion battery high-voltage technology and recent advances in high-voltage electrolytes 被引量:1
18
作者 Jianguo Liu Baohui Li +2 位作者 Jinghang Cao Xiao Xing Gan Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期73-98,共26页
The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capac... The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries. 展开更多
关键词 Lithium-ion battery High voltage Electrolyte additive Solid electrolyte
下载PDF
From concept to commercialization:A review of tubular solid oxide fuel cell technology 被引量:1
19
作者 Ruyan Chen Yuan Gao +4 位作者 Jiutao Gao Huiyu Zhang Martin Motola Muhammad Bilal Hanif Cheng-Xin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期79-109,I0003,共32页
The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the st... The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed. 展开更多
关键词 Tubular solid oxide fuel cell Support material Geometric structure Preparation methods STACK
下载PDF
Optimizing support performances of bolt reaming and anchoring in a coal drift 被引量:1
20
作者 Wei Wang Yishan Pan +7 位作者 Yonghui Xiao Lianpeng Dai Xinping Zhang Yuheng Wang Xufeng Qin Yanfei Zhu Yan Liu Gang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3885-3906,共22页
In current practice of bolt reaming and anchoring of roadways in soft coal and rock mass,resin cartridges bend easily under the strong pushing and stirring of bolts,and the resin accumulates in the bolt-reamed area an... In current practice of bolt reaming and anchoring of roadways in soft coal and rock mass,resin cartridges bend easily under the strong pushing and stirring of bolts,and the resin accumulates in the bolt-reamed area and does not participate in the stirring.As a result,bolts encounter high drilling resistance and cannot reach the bottom of drillholes.The effective anchorage length is far less than the actual anchorage length.Bolts are not centered,and the shear is misaligned at the joint surface in the reaming area,which leads to cracking of the whole anchoring solid and large shear deformation of bolts.This study systematically analyzes the characteristics of roadway bolt reaming and anchoring.The influences of resin stirring force,bolt pull-out force,and reamingeanchoring solid strength on reamingeanchoring performance were analyzed theoretically.The main purpose is to develop a device that enhances reaming and anchoring.The mechanism through which the device strengthens the reamingeanchoring solid was analyzed theoretically.Numerical simulation and experiments were carried out to verify the improved performance of the small-pore reaming and anchoring using the proposed technology.The results showed that the stirring migration rate of the resin cartridge is greatly improved by adding the device to bolts.The reaction rate of the anchoring mixture,stirring pressure,pull-out force of the reaming and anchoring system,bolt concentricity,and shear and compressive strengths of the anchoring solid are also enhanced in the reaming area.This ensures that the resin cartridge in the reaming area is completely stirred,which greatly improves the shear resistance of the reamingeanchoring solid.Meanwhile,the drilling performance,torsional force,and stirring efficiency of bolts are maximized and prevail over those of conventional bolts. 展开更多
关键词 Bolt reaming Enhancement device Reamingeanchoring performance Strength of reamingeanchoring solid Bearing capacity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部