This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study hig...This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf.展开更多
This study presents a significant contribution to the field of water quality assessment and sustainable water management practices. By evaluating the levels of total dissolved solids (TDS) in seawater intakes within A...This study presents a significant contribution to the field of water quality assessment and sustainable water management practices. By evaluating the levels of total dissolved solids (TDS) in seawater intakes within Al-Khobar desalination production system, the study addresses a crucial aspect of water treatment and environmental impact assessment. The findings provide valuable insights into the variations and trends of TDS levels across different phases of the system, highlighting the importance of monitoring and management strategies. The study provided both gravimetric total dissolved solids (TDS) and electrical conductivity (EC) measurements to analyze TDS calculation factor and evaluate measurement accuracy. Results revealed significant variations in TDS levels across the sampling locations, with phase-2 exhibiting higher levels and greater fluctuations. Phase-3 displayed similar trends but with lower TDS levels, while phase-4 showed slightly different behavior with higher average TDS levels. EC measurements demonstrated a strong correlation with TDS, providing a reliable estimation. However, additional methods such as gravimetric analysis should be employed to confirm TDS measurements. The findings contribute to understanding water quality in the Al-Khobar desalination system, aiding in monitoring, management, and decision-making processes for water treatment and environmental impact assessment. The study enhances the credibility of water quality assessments and supports sustainable water management practices.展开更多
Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains,necessitating the development of rob...Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains,necessitating the development of robust com-putational methods.This paper introduces a Conditional Generation Adversarial Network Isogeometric Analysis(CGAN-IGA)to assess the uncertainty of dielectric solids’mechanical characteristics.IGA is utilized for the precise computation of electric potentials in dielectric,piezoelectric,and flexoelectric materials,leveraging its advantage of integrating seamlessly with Computer-Aided Design(CAD)models to maintain exact geometrical fidelity.The CGAN method is highly efficient in generating models for piezoelectric and flexoelectric materials,specifically adapting to targeted design requirements and constraints.Then,the CGAN-IGA is adopted to calculate the electric potential of optimum models with different parameters to accelerate uncertainty quantification processes.The accuracy and feasibility of this method are verified through numerical experiments presented herein.展开更多
Dynamic performance on solids flow with water in deviated tubing is essential for the reliability of pump and normal operation of horizontal and directional wells.Compared with coal-water flow in vertical tubing and s...Dynamic performance on solids flow with water in deviated tubing is essential for the reliability of pump and normal operation of horizontal and directional wells.Compared with coal-water flow in vertical tubing and sand-oil flow with high production in deviated tubing,solids deposition with water shows obvious non-symmetric distributions in deviated tubing from simulations and experiments.The mathematical model of two phase flow was developed under coupling conditions of deviated tubing,low flow rate and viscosity based on the kinetic theory of granular flow and first-order discrete scheme.The results show that solid-water stratified flow in deviated tubing can be divided into two zones of suspension bed and the moving bed throughout the flow field.The solid flowing velocity with water is negative and particles slide down at the bottom of moving bed zone.The process of solids flow with water in deviated tubing will produce pressure loss and consume the kinetic energy.The thickness of deposited layer and the flowing velocity of solids flow downward with water at the moving bed zone enhance with the decreased inlet flow rate and the increased particle size,tubing inside diameter(ID)and inclination angle.Solids are easier into suspension from the upper part of moving bed zone to suspension bed zone and more solid particles flow with water towards the tubing outlet with the increase of inlet flowing velocity.The decision is made to reduce the screen width,tubing ID and inclination angle to maintain to be greater than critical deposition velocity in order to prevent solids settling.And it provides the theoretical basis and technical reserves for solid control and offers an effective approach to enhance tubing cleaning in deviated strings.展开更多
Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properti...Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions.展开更多
In recirculating aquaculture systems(RASs),the effective treatment of aquaculture tailwater is essential to maintain the health of the RAS.This study investigated the optimal time and method for tailwater treatment du...In recirculating aquaculture systems(RASs),the effective treatment of aquaculture tailwater is essential to maintain the health of the RAS.This study investigated the optimal time and method for tailwater treatment during three periods of the aquaculture of the Litopenaeus vannamei:nursery(0–26 d),middle(27–57 d),and later(57–104 d).The variation of several water parameters during the dissolution of total suspended solid(TSS)in tailwater,applied with the effects of ozone on the microorganism and water quality parameters were investigated.Results showed that the TSS concentrations in tailwater decreased with time,although not significantly(P>0.05),whereas total ammonia nitrogen(TAN),nitrite(NO-2-N),and nitrate(NO_(3)^(-)-N)increased significantly(P<0.05).Therefore,TSS should be removed from the tailwater as early as possible,being most optimal within 4 h.Ozone removed 38.24%–48.95%of TSS,17.78%–90.14%of TAN,and 87.50%–98.90%of NO-2-N after 4 h of treatment.However,it resulted in the significant accumulation of NO_(3)^(-)-N.Moreover,the total number of Vibrio and bacterial counts in aquaculture tailwater was reduced completely by ozone within 4 h.Thus,these results provided technical details and data support for the effective treatment of tailwater from shrimp RAS.展开更多
Surface water was taken from river mouth to the central area of Meiliang Bay, Taihu Lake, a large shallow eutrophic lake in China. Suspended solids were condensed by centrifugation 25 L surface water samples from each...Surface water was taken from river mouth to the central area of Meiliang Bay, Taihu Lake, a large shallow eutrophic lake in China. Suspended solids were condensed by centrifugation 25 L surface water samples from each selected site. Suspended solids and surface sediments were further freeze-dried and microwave digested before determining the metals by ICP-AES. Among the metals analyzed in suspended solids and sediments, contents of Cr, Cu, Mn, Ni, and Zn in suspended solids were significantly higher than those in sediments while contents of Al, Ba, Be, Ca, Co, Fe, K, Mg, Pb, and V in suspended solids were 10%—30% higher than those in sediments. Sr and Ti contents in suspended solids and sediments were very similar. Na content in suspended solids was lower than that in sediments. Heavy metals were significantly accumulated in suspended solids. From the river mouth to the center of Meiliang Bay, contents of Cr, Cu, Pb, and Zn in suspended solids showed a gradual decreasing trend indicating the river(Zhihugang River) still discharged large quantity of heavy metals to Meiliang Bay. The study suggests that the geochemical behaviors and ecological effects of heavy metals in suspended solids may serve as a good indicator for the pollution of lake.展开更多
Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in ...Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in China than others, especially for urban waste solids. Most of the design works up to now are based on a roughly estimation of the amount of urban waste solids without any theoretical support, which lead to a series problems. To meet the basic information requirements for the design work, the amount of the urban waste solids was predicted in this research by applying the gray theoretical model GM (1,1) through non linear differential equation simulation. The model parameters were estimated with the least square method (LSM) by running a certain MATALAB program, and the hypothesis test results show that the residual between the prediction value and the actual value approximately comply with the normal distribution N (0,0 21 2), and the probability of the residual within the range (-0 17, 0 19) is more than 95%, which indicate obviously that the model can be well used for the prediction of the amount of waste solids and those had been already testified by the latest two years data about the urban waste solids from Loudi City of China. With this model, the predicted amount of the waste solids produced in Loudi City in the next 30 years is 8049000 ton in total.展开更多
High total dissolved solids (TDS) content is one of the most important pollution contributors in lakes in arid and semiarid areas. Ulansuhai Lake, located in Urad Qianqi, Inner Mongolia, China, was selected as the o...High total dissolved solids (TDS) content is one of the most important pollution contributors in lakes in arid and semiarid areas. Ulansuhai Lake, located in Urad Qianqi, Inner Mongolia, China, was selected as the object of study. Temperatures and TDS contents of both ice and under-ice water were collected together with corresponding ice thickness. TDS profiles were drawn to show the distribution of TDS and to describe TDS migration. The results showed that about 80% (that is 3.602x108 kg) of TDS migrated from ice to water during the whole growth period of ice. Within ice layer, TDS migration only occurred during initial ice-on period, and then perished. The TDS in ice decreased with increasing ice thickness, following a negative exponential-like trend. Within un- der-ice water, the TDS migrated from ice-water interface to the entire water column under the effect of concentra- tion gradient until the water TDS content was uniform. In winter, 6.044x 107 kg (16.78% of total TDS) TDS migrated from water to sedirnent, which indicated that winter is the best time for dredging sediment. The migration effect gives rise to TDS concentration in under-ice water and sediment that is likely to affect ecosystem and water quality of the Yellow River. The trend of transfer flux of ice-water and water-sediment interfaces is similar to that of ice growth rate, which reveals that ice growth rate is one of the determinants of TDS migration. The process and mechanism of TDS migration can be referenced by research on other lakes with similar TDS content in cold and arid areas.展开更多
Nondestructive method of measuring soluble solids content (SSC) of citrus fruits was developed using Fourier transform near infrared reflectance (FT-NIR) measurements collected through optics fiber. The models describ...Nondestructive method of measuring soluble solids content (SSC) of citrus fruits was developed using Fourier transform near infrared reflectance (FT-NIR) measurements collected through optics fiber. The models describing the relationship between SSC and the NIR spectra of citrus fruits were developed and evaluated. Different spectra correction algorithms (standard normal variate (SNV), multiplicative signal correction (MSC)) were used in this study. The relationship between laboratory SSC and FT-NIR spectra of citrus fruits was analyzed via principle component regression (PCR) and partial least squares (PLS) re- gression method. Models based on the different spectral ranges were compared in this research. The first derivative and second derivative were applied to all spectra to reduce the effects of sample size, light scattering, instrument noise, etc. Different baseline correction methods were applied to improve the spectral data quality. Among them the second derivative method after baseline correction produced best noise removing capability and yielded optimal calibration models. A total of 170 NIR spectra were acquired; 135 NIR spectra were used to develop the calibration model; the remaining spectra were used to validate the model. The developed PLS model describing the relationship between SSC and NIR reflectance spectra could predict SSC of 35 samples with correlation coefficient of 0.995 and RMSEP of 0.79 °Brix.展开更多
Recent advances in high-pressure technologies and large-scale experimental and computational facilities have enabled scientists,at an unprecedented rate,to discover and predict novel states and materials under the ext...Recent advances in high-pressure technologies and large-scale experimental and computational facilities have enabled scientists,at an unprecedented rate,to discover and predict novel states and materials under the extreme pressure-temperature conditions found in deep,giant-planet interiors.Based on a well-documented body of work in this field of high-pressure research,we elucidate the fundamental principles that govern the chemistry of dense solids under extreme conditions.These include:(i)the pressure-induced evolution of chemical bonding and structure of molecular solids to extended covalent solids,ionic solids and,ultimately,metallic solids,as pressure increases to the terapascal regime;(ii)novel properties and complex transition mechanisms,arising from the subtle balance between electron hybridization(bonding)and electrostatic interaction(packing)in densely packed solids;and(iii)new dense framework solids with high energy densities,and with tunable properties and stabilities under ambient conditions.Examples are taken primarily fromlow-Z molecular systems that have scientific implications for giant-planet models,condensed materials physics,and solid-state core-electron chemistry.展开更多
We propose an experimental approach to directly detect the acoustic radiation induced static component(SC)of primary longitudinal(L)wave propagation in solids using an ultrasonic pitch-catch technique,where a lowfrequ...We propose an experimental approach to directly detect the acoustic radiation induced static component(SC)of primary longitudinal(L)wave propagation in solids using an ultrasonic pitch-catch technique,where a lowfrequency ultrasonic transducer is used to detect the SC generated by the co-propagating primary L-wave tone burst that is excited by a high-frequency ultrasonic transducer.Essentially,the experimental approach proposed uses a dynamic method to detect the SC generated.The basic requirement is that the central frequency of the low-frequency ultrasonic transducer needs to be near the center of the main lobe frequency range of the time-domain envelope of the primary L-wave tone burst.Under this condition,the main lobe of the frequency spectrum of the SC pulse generated adequately overlaps with that of the low-frequency ultrasonic transducer.This will enable the generated SC pulse to be directly detected by the low-frequency ultrasonic transducer.The performed experimental examination validates the feasibility and effectiveness of the proposed approach for direct detection of the acoustic radiation induced SC generated by L-wave propagation in solids.展开更多
Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC d...Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350-1000 nm. Spectra data were analyzed by two multivariate calibration techniques: partial least squares (PLS) and principal component regression (PCR) methods. Two experiments were designed for two varieties of watermelons [Qilin (QL), Zaochunhongyu (ZC)], which have different skin thickness range and shape dimensions. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models. The first derivative spectra showed the best results with high correlation coefficient of determination [r=0.918 (QL); r=0.954 (ZC)], low RMSEP [0.65 °Brix (QL); 0.58 °Brix (ZC)], low RMSEC [0.48 °Brix (QL); 0.34°Brix (ZC)] and small difference between the'RMSEP and the RMSEC by PLS method. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon, and the predicted values were highly correlated with destructively measured values for SSC. The models based on smoothing spectra (Savitzky-Golay filter smoothing method) did not enhance the performance of calibration models obviously. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon SSC in a nondestructive way.展开更多
The hydrodynamics and solids mixing behavior in a riser with blunt internals are studied. A uniform radial distribution for solids fraction and particle velocity achieves near the internals. The turbulent velocity of ...The hydrodynamics and solids mixing behavior in a riser with blunt internals are studied. A uniform radial distribution for solids fraction and particle velocity achieves near the internals. The turbulent velocity of particles near the wall increases with the addition of the internals, with the lateral solids mixing enhanced significantly. Probability density distribution of particle velocity is bimodal in the riser with internals, which is similar to that in the conventional riser, indicating that no significant difference in the micro flow structure exists between the riser with internals and the conventional riser. At the same time, the axial solids mixing behavior changes insignificantly with the addition of internals. These results indicate that the micro flow structure in the riser is very stable, which changes insignificantly with the change of the bed structure.展开更多
A macro slip theory is presented in this paper.Four independent slip systems are proposed for polycrystalline solids.Each slip system consists of a slip plane which lies on a face of the octahedron in stress space and...A macro slip theory is presented in this paper.Four independent slip systems are proposed for polycrystalline solids.Each slip system consists of a slip plane which lies on a face of the octahedron in stress space and a slip direction which is coincident with shear stress acting on the same face of the octahedron.It is proved that for proportional loading,present results are identical with the classical flow theory of plasticity. For nonproportional loading,the macro slip theory shows good predicting ability.The calculated results are in good agreement with the experimental data.展开更多
To investigate the dynamic characteristics of total suspended solids (TSS) and their particle-bound heavy metals in a first flush, the runoff sampling together with its flow rate measuring was conducted for three rain...To investigate the dynamic characteristics of total suspended solids (TSS) and their particle-bound heavy metals in a first flush, the runoff sampling together with its flow rate measuring was conducted for three rainfall events at outfalls of highway in Shanghai from June to September 2007. Field samples were analyzed to determine the concentrations of TSS and particle-bound heavy metals, such as Zn, Pb, and Cu. Results show that the wash off behavior of TSS under varying runoff rate condition can be explained by different antecedent dry weather period (ADWP). Contribution of fine fraction (<45 μm) to TSS was generally higher than that of coarse fraction (>45 μm). When the runoff flow increased obviously, a significant contribution of the coarse fraction was observed for a certain rainfall events with long antecedent dry weather condition. The changes of total metals concentration and particle-bound metal concentrations were strongly dependent on the TSS variation. TSS was generally well correlated with most particulate-bound heavy metals. Of the heavy metals, the concentration of Zn was found considerably high and that of Pb was significantly low at North Zhongshan 2 Road, in Shanghai, China, but they are still within the range reported in the literature. Fluctuation of heavy metal contents in the coarse fraction during a first flush period was more significant compared with that in the fine fraction. The results will assist in the development of effective control strategies to minimize heavy metals and solids in highway runoff.展开更多
A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using h...A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using hourly measured data of sediment contents during 25–26, July 1999. The results showed that modeled contents matched well with measured ones and that the modeled top layer distribution agreed with the remotely sensed image of suspended solids in summer. The modeled results showed clearly the layers of sus- pended solids in depth, with larger sediment contents in lower layers though in the interface between salt water and freshwater the lowest contents appeared in middle layer. In overall, the suspended solids inflow from 8 rivers, transport southwestward, and carried by strong coastal flow in Zhujiang River estuary. Contours of sediment contents in the estuary spread further to the open sea during ebb tide rather than flood tide which reflects that the suspended solids in the estuary are land sourced.展开更多
The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em>&...The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em><sub><em>V</em></sub> = π <span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span> <em><em style="white-space:normal;">φ</em></em><sup>5</sup>, where <img src="Edit_83decbce-7252-44ed-a822-fef13e43fd2a.bmp" alt="" /> is the golden mean. It is important that the number <em>φ</em><sup>5</sup> is a fundamental constant of nature describing phase transition from microscopic to cosmic scale. In this contribution the relatively small volume ratio of the Great Pyramid was compared to that of selected convex polyhedral solids such as the <em>Platonic </em>solids respectively the face-rich truncated icosahedron (bucky ball) as one of <em>Archimedes</em>’ solids leading to effective filling of the polyhedron by its in-sphere and therefore the highest volume ratio of the selected examples. The smallest ratio was found for the Great Pyramid. A regression analysis delivers the highly reliable volume ratio relation <img src="Edit_79e766ce-5580-4ae0-a706-570e0f3f1bd8.bmp" alt="" />, where <em>nF</em> represents the number of polyhedron faces and b approximates the silver mean. For less-symmetrical solids with a unique axis (tetragonal pyramids) the in-sphere can be replaced by a biaxial ellipsoid of maximum volume to adjust the <em>R</em><sub><em>V</em></sub> relation more reliably.展开更多
Non-aqueous extraction(NAE)of bitumen from oil sands has been gaining great attention from both the industry and academia as an alternative to the water-based extraction.A fine solids removal step is important for a N...Non-aqueous extraction(NAE)of bitumen from oil sands has been gaining great attention from both the industry and academia as an alternative to the water-based extraction.A fine solids removal step is important for a NAE process in order to obtain high-quality bitumen product,which,however,remains a great challenge to reduce the fine solids content to the desired level.Here,we introduce a strategy of destabilizing the bitumen-coated silica particles in toluene with the addition of water and biomolecules extracted from Cyamopsiste tragonolobuosr L.Taup.,i.e.,high molecular weight guar gum(HGG)and low molecular weight guar gum(LGG),respectively.By virtue of sedimentation tests and focused beam reflectance measurement analysis,we demonstrate that the introduced water droplets modified with these biomolecules can facilitate the settling of the solid particles in toluene although the underlying mechanisms differ between these two biomolecule cases.Specifically,in the case of LGG,the added water droplets with the interfacial amphiphilic LGG can strengthen the attachment of solid particles from bulk toluene to the LGG surface.This research work provides useful insight into the development of effective approaches for destabilization and removal of bitumen-coated fine solids from NAE bitumen.展开更多
This paper presents the performance results of a 366-day pilot-scale submerged membrane bioreactor (SMBR) for treating high-strength pharmaceutical wastewater. The study focuses on the growth properties of mixed liquo...This paper presents the performance results of a 366-day pilot-scale submerged membrane bioreactor (SMBR) for treating high-strength pharmaceutical wastewater. The study focuses on the growth properties of mixed liquor suspended solids (MLSS) in SMBR operated at high volumetric loading rates. The influences of MLSS on COD removal,sludge yield,oxygen utilization rates and sludge viscosity are studied. Results show that the bioreactor can be operated at higher volumetric loading rate with a low sludge yield. VSS/SS and observed sludge yield coefficient (Yo) present a decreasing trend with the decrease of hydraulic retention time (HRT) . Sludge oxygen utilization rate decreases with the increase of mixed liquor volatile suspended solids (MLVSS) . A mathematical model between sludge viscosity and MLSS is developed.展开更多
文摘This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf.
文摘This study presents a significant contribution to the field of water quality assessment and sustainable water management practices. By evaluating the levels of total dissolved solids (TDS) in seawater intakes within Al-Khobar desalination production system, the study addresses a crucial aspect of water treatment and environmental impact assessment. The findings provide valuable insights into the variations and trends of TDS levels across different phases of the system, highlighting the importance of monitoring and management strategies. The study provided both gravimetric total dissolved solids (TDS) and electrical conductivity (EC) measurements to analyze TDS calculation factor and evaluate measurement accuracy. Results revealed significant variations in TDS levels across the sampling locations, with phase-2 exhibiting higher levels and greater fluctuations. Phase-3 displayed similar trends but with lower TDS levels, while phase-4 showed slightly different behavior with higher average TDS levels. EC measurements demonstrated a strong correlation with TDS, providing a reliable estimation. However, additional methods such as gravimetric analysis should be employed to confirm TDS measurements. The findings contribute to understanding water quality in the Al-Khobar desalination system, aiding in monitoring, management, and decision-making processes for water treatment and environmental impact assessment. The study enhances the credibility of water quality assessments and supports sustainable water management practices.
文摘Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains,necessitating the development of robust com-putational methods.This paper introduces a Conditional Generation Adversarial Network Isogeometric Analysis(CGAN-IGA)to assess the uncertainty of dielectric solids’mechanical characteristics.IGA is utilized for the precise computation of electric potentials in dielectric,piezoelectric,and flexoelectric materials,leveraging its advantage of integrating seamlessly with Computer-Aided Design(CAD)models to maintain exact geometrical fidelity.The CGAN method is highly efficient in generating models for piezoelectric and flexoelectric materials,specifically adapting to targeted design requirements and constraints.Then,the CGAN-IGA is adopted to calculate the electric potential of optimum models with different parameters to accelerate uncertainty quantification processes.The accuracy and feasibility of this method are verified through numerical experiments presented herein.
基金funded by National Natural Science Foundation of China(Grant No.52074161)National Science and Technology Major Project of China(Grant No.2016ZX05065-001)+2 种基金Taishan Scholar Project of Shandong Province(Grant No.tsqn202211177)Shandong Provincial Plan for Introduction and Cultivation of Young Pioneers in Colleges and Universities(Grant No.2021-QingChuang-30613019)Natural Science Foundation of Shandong Province(Grant No.ZR2022ME173).
文摘Dynamic performance on solids flow with water in deviated tubing is essential for the reliability of pump and normal operation of horizontal and directional wells.Compared with coal-water flow in vertical tubing and sand-oil flow with high production in deviated tubing,solids deposition with water shows obvious non-symmetric distributions in deviated tubing from simulations and experiments.The mathematical model of two phase flow was developed under coupling conditions of deviated tubing,low flow rate and viscosity based on the kinetic theory of granular flow and first-order discrete scheme.The results show that solid-water stratified flow in deviated tubing can be divided into two zones of suspension bed and the moving bed throughout the flow field.The solid flowing velocity with water is negative and particles slide down at the bottom of moving bed zone.The process of solids flow with water in deviated tubing will produce pressure loss and consume the kinetic energy.The thickness of deposited layer and the flowing velocity of solids flow downward with water at the moving bed zone enhance with the decreased inlet flow rate and the increased particle size,tubing inside diameter(ID)and inclination angle.Solids are easier into suspension from the upper part of moving bed zone to suspension bed zone and more solid particles flow with water towards the tubing outlet with the increase of inlet flowing velocity.The decision is made to reduce the screen width,tubing ID and inclination angle to maintain to be greater than critical deposition velocity in order to prevent solids settling.And it provides the theoretical basis and technical reserves for solid control and offers an effective approach to enhance tubing cleaning in deviated strings.
基金the financial support from the National Natural Science Foundation of China (Nos.52204389,U19A2084 and 52234009)the National Key Research and Development Program (No.2022YFE0122000)Program for the Central University Youth Innovation Team。
文摘Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions.
基金Supported by the National Key R&D Program of China(No.2019YFD0900502)。
文摘In recirculating aquaculture systems(RASs),the effective treatment of aquaculture tailwater is essential to maintain the health of the RAS.This study investigated the optimal time and method for tailwater treatment during three periods of the aquaculture of the Litopenaeus vannamei:nursery(0–26 d),middle(27–57 d),and later(57–104 d).The variation of several water parameters during the dissolution of total suspended solid(TSS)in tailwater,applied with the effects of ozone on the microorganism and water quality parameters were investigated.Results showed that the TSS concentrations in tailwater decreased with time,although not significantly(P>0.05),whereas total ammonia nitrogen(TAN),nitrite(NO-2-N),and nitrate(NO_(3)^(-)-N)increased significantly(P<0.05).Therefore,TSS should be removed from the tailwater as early as possible,being most optimal within 4 h.Ozone removed 38.24%–48.95%of TSS,17.78%–90.14%of TAN,and 87.50%–98.90%of NO-2-N after 4 h of treatment.However,it resulted in the significant accumulation of NO_(3)^(-)-N.Moreover,the total number of Vibrio and bacterial counts in aquaculture tailwater was reduced completely by ozone within 4 h.Thus,these results provided technical details and data support for the effective treatment of tailwater from shrimp RAS.
文摘Surface water was taken from river mouth to the central area of Meiliang Bay, Taihu Lake, a large shallow eutrophic lake in China. Suspended solids were condensed by centrifugation 25 L surface water samples from each selected site. Suspended solids and surface sediments were further freeze-dried and microwave digested before determining the metals by ICP-AES. Among the metals analyzed in suspended solids and sediments, contents of Cr, Cu, Mn, Ni, and Zn in suspended solids were significantly higher than those in sediments while contents of Al, Ba, Be, Ca, Co, Fe, K, Mg, Pb, and V in suspended solids were 10%—30% higher than those in sediments. Sr and Ti contents in suspended solids and sediments were very similar. Na content in suspended solids was lower than that in sediments. Heavy metals were significantly accumulated in suspended solids. From the river mouth to the center of Meiliang Bay, contents of Cr, Cu, Pb, and Zn in suspended solids showed a gradual decreasing trend indicating the river(Zhihugang River) still discharged large quantity of heavy metals to Meiliang Bay. The study suggests that the geochemical behaviors and ecological effects of heavy metals in suspended solids may serve as a good indicator for the pollution of lake.
文摘Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in China than others, especially for urban waste solids. Most of the design works up to now are based on a roughly estimation of the amount of urban waste solids without any theoretical support, which lead to a series problems. To meet the basic information requirements for the design work, the amount of the urban waste solids was predicted in this research by applying the gray theoretical model GM (1,1) through non linear differential equation simulation. The model parameters were estimated with the least square method (LSM) by running a certain MATALAB program, and the hypothesis test results show that the residual between the prediction value and the actual value approximately comply with the normal distribution N (0,0 21 2), and the probability of the residual within the range (-0 17, 0 19) is more than 95%, which indicate obviously that the model can be well used for the prediction of the amount of waste solids and those had been already testified by the latest two years data about the urban waste solids from Loudi City of China. With this model, the predicted amount of the waste solids produced in Loudi City in the next 30 years is 8049000 ton in total.
基金Financial support was provided by the National Natural Science Foundation of China (50569002,50669004 and 51069007)Natural Science Foundation of Inner Mongolia (200711020604)Key Project from Department of Water Resources of Inner Mongolia (20080105)
文摘High total dissolved solids (TDS) content is one of the most important pollution contributors in lakes in arid and semiarid areas. Ulansuhai Lake, located in Urad Qianqi, Inner Mongolia, China, was selected as the object of study. Temperatures and TDS contents of both ice and under-ice water were collected together with corresponding ice thickness. TDS profiles were drawn to show the distribution of TDS and to describe TDS migration. The results showed that about 80% (that is 3.602x108 kg) of TDS migrated from ice to water during the whole growth period of ice. Within ice layer, TDS migration only occurred during initial ice-on period, and then perished. The TDS in ice decreased with increasing ice thickness, following a negative exponential-like trend. Within un- der-ice water, the TDS migrated from ice-water interface to the entire water column under the effect of concentra- tion gradient until the water TDS content was uniform. In winter, 6.044x 107 kg (16.78% of total TDS) TDS migrated from water to sedirnent, which indicated that winter is the best time for dredging sediment. The migration effect gives rise to TDS concentration in under-ice water and sediment that is likely to affect ecosystem and water quality of the Yellow River. The trend of transfer flux of ice-water and water-sediment interfaces is similar to that of ice growth rate, which reveals that ice growth rate is one of the determinants of TDS migration. The process and mechanism of TDS migration can be referenced by research on other lakes with similar TDS content in cold and arid areas.
基金Project supported by New Century Excellent Talents in University(No. NCET-04-0524), and the Research Fund for the Doctoral Pro-gram of Higher Education (No. 20030335060) of China
文摘Nondestructive method of measuring soluble solids content (SSC) of citrus fruits was developed using Fourier transform near infrared reflectance (FT-NIR) measurements collected through optics fiber. The models describing the relationship between SSC and the NIR spectra of citrus fruits were developed and evaluated. Different spectra correction algorithms (standard normal variate (SNV), multiplicative signal correction (MSC)) were used in this study. The relationship between laboratory SSC and FT-NIR spectra of citrus fruits was analyzed via principle component regression (PCR) and partial least squares (PLS) re- gression method. Models based on the different spectral ranges were compared in this research. The first derivative and second derivative were applied to all spectra to reduce the effects of sample size, light scattering, instrument noise, etc. Different baseline correction methods were applied to improve the spectral data quality. Among them the second derivative method after baseline correction produced best noise removing capability and yielded optimal calibration models. A total of 170 NIR spectra were acquired; 135 NIR spectra were used to develop the calibration model; the remaining spectra were used to validate the model. The developed PLS model describing the relationship between SSC and NIR reflectance spectra could predict SSC of 35 samples with correlation coefficient of 0.995 and RMSEP of 0.79 °Brix.
基金The present study has been performed in support of the NSF(Grant No.DMR 1701360),DOE-NNSA(Grant No.DENA0003342),ARO(Grant No.W911NF-17-1-0468),DARPA(Grant No.W31P4Q-12-1-0009),and ADD in Korea.
文摘Recent advances in high-pressure technologies and large-scale experimental and computational facilities have enabled scientists,at an unprecedented rate,to discover and predict novel states and materials under the extreme pressure-temperature conditions found in deep,giant-planet interiors.Based on a well-documented body of work in this field of high-pressure research,we elucidate the fundamental principles that govern the chemistry of dense solids under extreme conditions.These include:(i)the pressure-induced evolution of chemical bonding and structure of molecular solids to extended covalent solids,ionic solids and,ultimately,metallic solids,as pressure increases to the terapascal regime;(ii)novel properties and complex transition mechanisms,arising from the subtle balance between electron hybridization(bonding)and electrostatic interaction(packing)in densely packed solids;and(iii)new dense framework solids with high energy densities,and with tunable properties and stabilities under ambient conditions.Examples are taken primarily fromlow-Z molecular systems that have scientific implications for giant-planet models,condensed materials physics,and solid-state core-electron chemistry.
基金Supported by the National Natural Science Foundation of China(Grant No.11834008)。
文摘We propose an experimental approach to directly detect the acoustic radiation induced static component(SC)of primary longitudinal(L)wave propagation in solids using an ultrasonic pitch-catch technique,where a lowfrequency ultrasonic transducer is used to detect the SC generated by the co-propagating primary L-wave tone burst that is excited by a high-frequency ultrasonic transducer.Essentially,the experimental approach proposed uses a dynamic method to detect the SC generated.The basic requirement is that the central frequency of the low-frequency ultrasonic transducer needs to be near the center of the main lobe frequency range of the time-domain envelope of the primary L-wave tone burst.Under this condition,the main lobe of the frequency spectrum of the SC pulse generated adequately overlaps with that of the low-frequency ultrasonic transducer.This will enable the generated SC pulse to be directly detected by the low-frequency ultrasonic transducer.The performed experimental examination validates the feasibility and effectiveness of the proposed approach for direct detection of the acoustic radiation induced SC generated by L-wave propagation in solids.
基金Project supported by the National Natural Science Foundation of China (No. 30370371) and Program for New Century Excellent Talents in University (No. NCET-04-0524), China
文摘Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350-1000 nm. Spectra data were analyzed by two multivariate calibration techniques: partial least squares (PLS) and principal component regression (PCR) methods. Two experiments were designed for two varieties of watermelons [Qilin (QL), Zaochunhongyu (ZC)], which have different skin thickness range and shape dimensions. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models. The first derivative spectra showed the best results with high correlation coefficient of determination [r=0.918 (QL); r=0.954 (ZC)], low RMSEP [0.65 °Brix (QL); 0.58 °Brix (ZC)], low RMSEC [0.48 °Brix (QL); 0.34°Brix (ZC)] and small difference between the'RMSEP and the RMSEC by PLS method. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon, and the predicted values were highly correlated with destructively measured values for SSC. The models based on smoothing spectra (Savitzky-Golay filter smoothing method) did not enhance the performance of calibration models obviously. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon SSC in a nondestructive way.
文摘The hydrodynamics and solids mixing behavior in a riser with blunt internals are studied. A uniform radial distribution for solids fraction and particle velocity achieves near the internals. The turbulent velocity of particles near the wall increases with the addition of the internals, with the lateral solids mixing enhanced significantly. Probability density distribution of particle velocity is bimodal in the riser with internals, which is similar to that in the conventional riser, indicating that no significant difference in the micro flow structure exists between the riser with internals and the conventional riser. At the same time, the axial solids mixing behavior changes insignificantly with the addition of internals. These results indicate that the micro flow structure in the riser is very stable, which changes insignificantly with the change of the bed structure.
基金The project supported by Chinese Academy of Sciences
文摘A macro slip theory is presented in this paper.Four independent slip systems are proposed for polycrystalline solids.Each slip system consists of a slip plane which lies on a face of the octahedron in stress space and a slip direction which is coincident with shear stress acting on the same face of the octahedron.It is proved that for proportional loading,present results are identical with the classical flow theory of plasticity. For nonproportional loading,the macro slip theory shows good predicting ability.The calculated results are in good agreement with the experimental data.
基金Project supported by the National Key Technology R&D Program of China (No. 2006BAK13B04)the Expo Shanghai Sci-Tech Program of Science and Technology Commission of Shanghai (No.06dz05808)the Natural Science Foundation of Jiangxi Province(No. 2007GZH839), China
文摘To investigate the dynamic characteristics of total suspended solids (TSS) and their particle-bound heavy metals in a first flush, the runoff sampling together with its flow rate measuring was conducted for three rainfall events at outfalls of highway in Shanghai from June to September 2007. Field samples were analyzed to determine the concentrations of TSS and particle-bound heavy metals, such as Zn, Pb, and Cu. Results show that the wash off behavior of TSS under varying runoff rate condition can be explained by different antecedent dry weather period (ADWP). Contribution of fine fraction (<45 μm) to TSS was generally higher than that of coarse fraction (>45 μm). When the runoff flow increased obviously, a significant contribution of the coarse fraction was observed for a certain rainfall events with long antecedent dry weather condition. The changes of total metals concentration and particle-bound metal concentrations were strongly dependent on the TSS variation. TSS was generally well correlated with most particulate-bound heavy metals. Of the heavy metals, the concentration of Zn was found considerably high and that of Pb was significantly low at North Zhongshan 2 Road, in Shanghai, China, but they are still within the range reported in the literature. Fluctuation of heavy metal contents in the coarse fraction during a first flush period was more significant compared with that in the fine fraction. The results will assist in the development of effective control strategies to minimize heavy metals and solids in highway runoff.
基金This research was funded by The National Science Fund for Distin-guished Young Scholars (Estuarine and Coastal Studies 40225014) and The National Hi-Tech Research Fund (818-09-01-04).
文摘A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using hourly measured data of sediment contents during 25–26, July 1999. The results showed that modeled contents matched well with measured ones and that the modeled top layer distribution agreed with the remotely sensed image of suspended solids in summer. The modeled results showed clearly the layers of sus- pended solids in depth, with larger sediment contents in lower layers though in the interface between salt water and freshwater the lowest contents appeared in middle layer. In overall, the suspended solids inflow from 8 rivers, transport southwestward, and carried by strong coastal flow in Zhujiang River estuary. Contours of sediment contents in the estuary spread further to the open sea during ebb tide rather than flood tide which reflects that the suspended solids in the estuary are land sourced.
文摘The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em><sub><em>V</em></sub> = π <span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span> <em><em style="white-space:normal;">φ</em></em><sup>5</sup>, where <img src="Edit_83decbce-7252-44ed-a822-fef13e43fd2a.bmp" alt="" /> is the golden mean. It is important that the number <em>φ</em><sup>5</sup> is a fundamental constant of nature describing phase transition from microscopic to cosmic scale. In this contribution the relatively small volume ratio of the Great Pyramid was compared to that of selected convex polyhedral solids such as the <em>Platonic </em>solids respectively the face-rich truncated icosahedron (bucky ball) as one of <em>Archimedes</em>’ solids leading to effective filling of the polyhedron by its in-sphere and therefore the highest volume ratio of the selected examples. The smallest ratio was found for the Great Pyramid. A regression analysis delivers the highly reliable volume ratio relation <img src="Edit_79e766ce-5580-4ae0-a706-570e0f3f1bd8.bmp" alt="" />, where <em>nF</em> represents the number of polyhedron faces and b approximates the silver mean. For less-symmetrical solids with a unique axis (tetragonal pyramids) the in-sphere can be replaced by a biaxial ellipsoid of maximum volume to adjust the <em>R</em><sub><em>V</em></sub> relation more reliably.
基金the financial support from Institute for Oil Sands Innovation(IOSI),Imperial Oil,the Natural Sciences and Engineering Research Council of Canada(NSERC)and Alberta Innovates to the research workthe financial support from the Canada Foundation for Innovation(CFI),the Future Energy Systems underthe Canada First Research Excellence Fund and the Canada Research Chairs Program。
文摘Non-aqueous extraction(NAE)of bitumen from oil sands has been gaining great attention from both the industry and academia as an alternative to the water-based extraction.A fine solids removal step is important for a NAE process in order to obtain high-quality bitumen product,which,however,remains a great challenge to reduce the fine solids content to the desired level.Here,we introduce a strategy of destabilizing the bitumen-coated silica particles in toluene with the addition of water and biomolecules extracted from Cyamopsiste tragonolobuosr L.Taup.,i.e.,high molecular weight guar gum(HGG)and low molecular weight guar gum(LGG),respectively.By virtue of sedimentation tests and focused beam reflectance measurement analysis,we demonstrate that the introduced water droplets modified with these biomolecules can facilitate the settling of the solid particles in toluene although the underlying mechanisms differ between these two biomolecule cases.Specifically,in the case of LGG,the added water droplets with the interfacial amphiphilic LGG can strengthen the attachment of solid particles from bulk toluene to the LGG surface.This research work provides useful insight into the development of effective approaches for destabilization and removal of bitumen-coated fine solids from NAE bitumen.
基金Sponsored by the Natural Science Foundation of Heilongjiang Province(Grant No.e2007-04)
文摘This paper presents the performance results of a 366-day pilot-scale submerged membrane bioreactor (SMBR) for treating high-strength pharmaceutical wastewater. The study focuses on the growth properties of mixed liquor suspended solids (MLSS) in SMBR operated at high volumetric loading rates. The influences of MLSS on COD removal,sludge yield,oxygen utilization rates and sludge viscosity are studied. Results show that the bioreactor can be operated at higher volumetric loading rate with a low sludge yield. VSS/SS and observed sludge yield coefficient (Yo) present a decreasing trend with the decrease of hydraulic retention time (HRT) . Sludge oxygen utilization rate decreases with the increase of mixed liquor volatile suspended solids (MLVSS) . A mathematical model between sludge viscosity and MLSS is developed.