In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,br...In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,bright solitons and combined dark-bright solitons,travelling wave and periodic wave solutions with general coefficients.In our knowledge earlier reported results of the KE equation with specific coefficients.These obtained solutions are more useful in the development of optical fibers,dynamics of solitons,dynamics of adiabatic parameters,dynamics of fluid,problems of biomedical,industrial phenomena and many other branches.All calculations show that this technique is more powerful,effective,straightforward,and fruitfulness to study analytically other higher-order nonlinear complex PDEs involves in mathematical physics,quantum physics,Geo physics,fluid mechanics,hydrodynamics,mathematical biology,field of engineering and many other physical sciences.展开更多
This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the sys...This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio ε, represented by the ratio of amplitude to depth, and the dispersion ratio μ, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(μ^2). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.展开更多
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference...Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.展开更多
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic co...In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple.展开更多
Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolu...Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.展开更多
In this work, an adaptation of the tanh/tan-method that is discussed usually in the nonlinear partial differential equations is presented to solve nonlinear polynomial differential-difference equations. As a concrete ...In this work, an adaptation of the tanh/tan-method that is discussed usually in the nonlinear partial differential equations is presented to solve nonlinear polynomial differential-difference equations. As a concrete example,several solitary wave and periodic wave solutions for the chain which is related to the relativistic Toda lattice are derived.Some systems of the differential-difference equations that can be solved using our approach are listed and a discussion is given in conclusion.展开更多
In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient...In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient method and does not need linearization, weak nonlinearity assumptions or perturbation theory. The numerical solutions are also compared with their corresponding analytical solutions. It is shown that a very good approximation is achieved with the analytical solutions. Finally, the modulational instability is investigated and the corresponding condition is given.展开更多
In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the ...In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.展开更多
The quantum solitary wave solutions in a one-dimensional ferromagnetic chain is investigated by using theHartree-Fock approach and the multiple-scale method.It is shown that quantum solitary wave solutions can exist i...The quantum solitary wave solutions in a one-dimensional ferromagnetic chain is investigated by using theHartree-Fock approach and the multiple-scale method.It is shown that quantum solitary wave solutions can exist in aferromagnetic system with nearest-and next-nearest-neighbor exchange interaction,and at the certain value of the firstBrillouin zone,the solitary wave solution of the Hartree wave function becomes the intrinsic localized mode.展开更多
In this paper, we use Riccati equation to construct new solitary wave solutions of the nonlinear evolution equations (NLEEs). Through the new function transformation, the Riccati equation is solved, and many new solit...In this paper, we use Riccati equation to construct new solitary wave solutions of the nonlinear evolution equations (NLEEs). Through the new function transformation, the Riccati equation is solved, and many new solitary wave solutions are obtained. Then it is substituted into the (2 + 1)-dimensional BLMP equation and (2 + 1)-dimensional KDV equation as an auxiliary equation. Many types of solitary wave solutions are obtained by choosing different coefficient p<sub>1</sub> and q<sub>1</sub> in the Riccati equation, and some of them have not been found in other documents. These solutions that we obtained in this paper will be helpful to understand the physics of the NLEEs.展开更多
Taking the (2+1)-dimensional Broer-Kaup-Kupershmidt system as a simple example, some families of rational form solitary wave solutions, triangular periodic wave solutions, and rational wave solutions are constructed b...Taking the (2+1)-dimensional Broer-Kaup-Kupershmidt system as a simple example, some families of rational form solitary wave solutions, triangular periodic wave solutions, and rational wave solutions are constructed by using the Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.展开更多
According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusi...According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusions which are better than what the hyperbolic function method known does and simpler in use. With the aid of MATHEMATICA, the algorithm can be carried out in computer.展开更多
The Schamel–Korteweg–de Vries equation is investigated by the approach of dynamics.The existences of solitary wave including ω-shape solitary wave and periodic wave are proved via investigating the dynamical behavi...The Schamel–Korteweg–de Vries equation is investigated by the approach of dynamics.The existences of solitary wave including ω-shape solitary wave and periodic wave are proved via investigating the dynamical behaviors with phase space analyses.The sufficient conditions to guarantee the existences of the above solutions in different regions of the parametric space are given.All possible exact explicit parametric representations of the waves are also presented.Along with the details of the analyses,the analytical results are numerically simulated lastly.展开更多
Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equat...Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equation are examined and the bifurcations of phase portraits of this equation for various values of the front wave velocity are presented. Using the sineGordon expansion method and classic integration, we obtain exact transverse solutions including breathers, bright solitons,and periodic solutions.展开更多
A class of analytical solitary-wave solutions to the generalized nonautonomous cubic–quintic nonlinear Schrdinger equation with time-and space-modulated coefficients and potentials are constructed using the similarit...A class of analytical solitary-wave solutions to the generalized nonautonomous cubic–quintic nonlinear Schrdinger equation with time-and space-modulated coefficients and potentials are constructed using the similarity transformation technique. Constraints for the dispersion coefficient, the cubic and quintic nonlinearities, the external potential, and the gain (loss) coefficient are presented at the same time. Various shapes of analytical solitary-wave solutions which have important applications of physical interest are studied in detail, such as the solutions in Feshbach resonance management with harmonic potentials, Faraday-type waves in the optical lattice potentials, and localized solutions supported by the Gaussian-shaped nonlinearity. The stability analysis of the solutions is discussed numerically.展开更多
Abstract In terms of the solutions of an auxiliary ordinary differential equation, a new algebraic method, which contains the terms of first-order derivative of functions f (ξ), is constructed to explore the new so...Abstract In terms of the solutions of an auxiliary ordinary differential equation, a new algebraic method, which contains the terms of first-order derivative of functions f (ξ), is constructed to explore the new solitary wave solutions for nonlinear evolution equations. The method is applied to a compound KdV-Burgers equation, and abundant new solitary wave solutions are obtained. The algorithm is also applicable to a large variety of nonlinear evolution equations.展开更多
In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark...In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark-dark soliton wave solutions can be achieved in their limit conditions. We also obtain the different formation regions of combined solitons. Our results show that the intraspecies (interspecies) interaction strengths clearly affect the formation of dar^dark, bright-bright and dark-bright soliton solutions in different regions.展开更多
In this paper, an attempt is made to study some interesting results of the coupled nonlinear equations in the atmosphere. By introducing a phase angle function ζ, it is shown that the atmospheric equations in the pre...In this paper, an attempt is made to study some interesting results of the coupled nonlinear equations in the atmosphere. By introducing a phase angle function ζ, it is shown that the atmospheric equations in the presence of specific forcing exhibit the exact and explicit solitary wave solutions under certain conditions.展开更多
文摘In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,bright solitons and combined dark-bright solitons,travelling wave and periodic wave solutions with general coefficients.In our knowledge earlier reported results of the KE equation with specific coefficients.These obtained solutions are more useful in the development of optical fibers,dynamics of solitons,dynamics of adiabatic parameters,dynamics of fluid,problems of biomedical,industrial phenomena and many other branches.All calculations show that this technique is more powerful,effective,straightforward,and fruitfulness to study analytically other higher-order nonlinear complex PDEs involves in mathematical physics,quantum physics,Geo physics,fluid mechanics,hydrodynamics,mathematical biology,field of engineering and many other physical sciences.
文摘This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio ε, represented by the ratio of amplitude to depth, and the dispersion ratio μ, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(μ^2). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the Natural Science Foundation (Grant No 200408020103), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia, China and the Youth Foundation (Grant No QN004024) of Inner Mongolia Normal University, China.
文摘Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.
文摘By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
基金the National Key Basic Research Project of China under
文摘In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple.
文摘Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.
文摘In this work, an adaptation of the tanh/tan-method that is discussed usually in the nonlinear partial differential equations is presented to solve nonlinear polynomial differential-difference equations. As a concrete example,several solitary wave and periodic wave solutions for the chain which is related to the relativistic Toda lattice are derived.Some systems of the differential-difference equations that can be solved using our approach are listed and a discussion is given in conclusion.
基金supported by National Natural Science Foundation of China under Grant No. 10672147
文摘In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient method and does not need linearization, weak nonlinearity assumptions or perturbation theory. The numerical solutions are also compared with their corresponding analytical solutions. It is shown that a very good approximation is achieved with the analytical solutions. Finally, the modulational instability is investigated and the corresponding condition is given.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272071) and the Natural Science Foundation of Zhejiang Lishui University of China (Grant Nos KZ05004 and KY06024).
文摘In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.
基金supported by the Natural Science Foundation of Education Department of Hunan Province under Grant Nos.06C652 and 07C528National Natural Science Foundation of China under Grant No.10647132
文摘The quantum solitary wave solutions in a one-dimensional ferromagnetic chain is investigated by using theHartree-Fock approach and the multiple-scale method.It is shown that quantum solitary wave solutions can exist in aferromagnetic system with nearest-and next-nearest-neighbor exchange interaction,and at the certain value of the firstBrillouin zone,the solitary wave solution of the Hartree wave function becomes the intrinsic localized mode.
文摘In this paper, we use Riccati equation to construct new solitary wave solutions of the nonlinear evolution equations (NLEEs). Through the new function transformation, the Riccati equation is solved, and many new solitary wave solutions are obtained. Then it is substituted into the (2 + 1)-dimensional BLMP equation and (2 + 1)-dimensional KDV equation as an auxiliary equation. Many types of solitary wave solutions are obtained by choosing different coefficient p<sub>1</sub> and q<sub>1</sub> in the Riccati equation, and some of them have not been found in other documents. These solutions that we obtained in this paper will be helpful to understand the physics of the NLEEs.
文摘Taking the (2+1)-dimensional Broer-Kaup-Kupershmidt system as a simple example, some families of rational form solitary wave solutions, triangular periodic wave solutions, and rational wave solutions are constructed by using the Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
文摘According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusions which are better than what the hyperbolic function method known does and simpler in use. With the aid of MATHEMATICA, the algorithm can be carried out in computer.
基金supported by the National Natural Science Foundation of China (Grant No.11461022)。
文摘The Schamel–Korteweg–de Vries equation is investigated by the approach of dynamics.The existences of solitary wave including ω-shape solitary wave and periodic wave are proved via investigating the dynamical behaviors with phase space analyses.The sufficient conditions to guarantee the existences of the above solutions in different regions of the parametric space are given.All possible exact explicit parametric representations of the waves are also presented.Along with the details of the analyses,the analytical results are numerically simulated lastly.
文摘Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equation are examined and the bifurcations of phase portraits of this equation for various values of the front wave velocity are presented. Using the sineGordon expansion method and classic integration, we obtain exact transverse solutions including breathers, bright solitons,and periodic solutions.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175158)the Natural Science Foundation of Zhejiang Province of China(Grant No.LY12A04001)
文摘A class of analytical solitary-wave solutions to the generalized nonautonomous cubic–quintic nonlinear Schrdinger equation with time-and space-modulated coefficients and potentials are constructed using the similarity transformation technique. Constraints for the dispersion coefficient, the cubic and quintic nonlinearities, the external potential, and the gain (loss) coefficient are presented at the same time. Various shapes of analytical solitary-wave solutions which have important applications of physical interest are studied in detail, such as the solutions in Feshbach resonance management with harmonic potentials, Faraday-type waves in the optical lattice potentials, and localized solutions supported by the Gaussian-shaped nonlinearity. The stability analysis of the solutions is discussed numerically.
基金the Science and Technology Foundation of Guizhou Province under Grant No.20072009
文摘Abstract In terms of the solutions of an auxiliary ordinary differential equation, a new algebraic method, which contains the terms of first-order derivative of functions f (ξ), is constructed to explore the new solitary wave solutions for nonlinear evolution equations. The method is applied to a compound KdV-Burgers equation, and abundant new solitary wave solutions are obtained. The algorithm is also applicable to a large variety of nonlinear evolution equations.
基金supported by the Key Program of Chinese Ministry of Education(Grant No.2011015)the Hundred Innovation Talents Supporting Project of Hebei Province of China(Grant No.CPRC014)
文摘In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark-dark soliton wave solutions can be achieved in their limit conditions. We also obtain the different formation regions of combined solitons. Our results show that the intraspecies (interspecies) interaction strengths clearly affect the formation of dar^dark, bright-bright and dark-bright soliton solutions in different regions.
文摘In this paper, an attempt is made to study some interesting results of the coupled nonlinear equations in the atmosphere. By introducing a phase angle function ζ, it is shown that the atmospheric equations in the presence of specific forcing exhibit the exact and explicit solitary wave solutions under certain conditions.