A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed devic...A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed device performs efficient high-quality amplification and compression of solitons.展开更多
We report an all-fiber, all-polarization maintaining(PM) source of widely tunable(1800–2000 nm) ultrashort pulses based on the amplification of coherent self-frequency-shifted solitons generated in a highly nonlinear...We report an all-fiber, all-polarization maintaining(PM) source of widely tunable(1800–2000 nm) ultrashort pulses based on the amplification of coherent self-frequency-shifted solitons generated in a highly nonlinear fiber pumped with an Er-doped fiber laser. The system delivers sub-100 fs pulses with energies up to 8.6 nJ and is built entirely from PM optical fibers, without any free-space optics. The all-fiber alignment-free design significantly increases the suitability of such a source for field deployments.展开更多
基金The authors acknowledge the support of the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU5096/98E).
文摘A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed device performs efficient high-quality amplification and compression of solitons.
基金Ministerstwo Nauki i Szkolnictwa Wyzszego(MNi SW)(IP2015 072674)Statutory Funds of the Faculty of Electronics,Politechnika Wroclawska(PWr)
文摘We report an all-fiber, all-polarization maintaining(PM) source of widely tunable(1800–2000 nm) ultrashort pulses based on the amplification of coherent self-frequency-shifted solitons generated in a highly nonlinear fiber pumped with an Er-doped fiber laser. The system delivers sub-100 fs pulses with energies up to 8.6 nJ and is built entirely from PM optical fibers, without any free-space optics. The all-fiber alignment-free design significantly increases the suitability of such a source for field deployments.