Two coupled dark solitons are considered in a two-component Bose-Einstein condensate, and their dynamics are investigated by the variational approach based the renormalized integrals of motion. The stationary states a...Two coupled dark solitons are considered in a two-component Bose-Einstein condensate, and their dynamics are investigated by the variational approach based the renormalized integrals of motion. The stationary states as physical solutions to the describing equations are obtained, and the dynamic mechanism is demonstrated by performing a coordinate of a classical particle moving in an effective potential field. The switching and selftrapping dynamics of the coupled dark vector solitons are discussed by the evolution of the atom population transferring ratio.展开更多
The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of th...The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots展开更多
We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess ch...We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed.展开更多
We investigate the interactions of lattice pbonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that t...We investigate the interactions of lattice pbonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that the self-trapping can also appear in two-dimensional molecular lattice with a harmonic and nonlinear potential. The exciton effect on molecular lattice does not distort the molecular lattice but only makes it localized and the localization can also react, again through phonon coupling, to trap the energy and prevents its dispersion.展开更多
We investigate the self-trapping of a Bose Josephson junction, which is dispersively coupled to a driven optical cavity. The cavity-induced nonlinearity is presented analytically, and its effect results in the appeara...We investigate the self-trapping of a Bose Josephson junction, which is dispersively coupled to a driven optical cavity. The cavity-induced nonlinearity is presented analytically, and its effect results in the appearance of the self-trapping for the Bose-Einstein condensates in the Josephson oscillation regime. In addition, there exists competition between the nonlinearities induced by the interatomic interaction and by the driven cavity for the emergences of self-trapping. Our results show that the driven cavity can be utilized as a possible tool to produce the self-trapping for the condensates with weak interatomic interaction.展开更多
We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of...We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of multiplescale, and obtain that the self-trapping can also appear in the two-dimensional discrete molecular lattice with harmonic and nonlinear potential. The excitons' effect on the molecular lattice does not distort it but only causes it to localize which enables it to react again through phonon coupling to trap the energy and prevent its dispersion.展开更多
We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose--Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different ca...We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose--Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different cases of Josephson oscillation (JO), oscillating-phase-type self-trapping (OPTST), running-phase-type self-trapping (RPTST), and self-trapping (ST). It is found that the s-wave scattering lengths have a crucial role on the tunneling dynamics. By adjusting the scattering length in the adiabatic condition, the transition probability changes with the adiabatic periodicity and a rectangular periodic pattern emerges. The periodicity of the rectangular wave depends on the system parameters such as the periodicity of the adjustable parameter, the s-wave scattering length.展开更多
The tungsten are deemed to be the most promising candidates as plasma facing material due to its high melting temperature, good thermal properties, low sputtering yields[1]. In the near surface of plasma facing materi...The tungsten are deemed to be the most promising candidates as plasma facing material due to its high melting temperature, good thermal properties, low sputtering yields[1]. In the near surface of plasma facing materials high densities of interstitials and vacancies are produced in addition to high concentrations of hydrogen and helium (He). He easily are trapped by vacancies, dislocations, grain boundaries to form He bubble nucleation. When no traps are available, He spontaneously form clusters, which result in strong lattice strain. It can be relieved by ejecting one or more matrix atoms to form one or more Frenkel Pairs, i:e:vacancies and self-interstitial atoms. He cluster will be trapped by the vacancy it created, this is a self-trapping event[2].展开更多
Using the mutually coherent function, the self-trapping of the circle partially coherent optical beam in the total internal reflective photonic crystal fiber(TIRPCF) under Compton scattering is studied. The study show...Using the mutually coherent function, the self-trapping of the circle partially coherent optical beam in the total internal reflective photonic crystal fiber(TIRPCF) under Compton scattering is studied. The study shows that the composition of the non-coherent optical beam in the optical spectrum and the diffraction effect are decreased by Compton scattering, and the probability of forming the soliton is greatly increased. The vibration peak value in the propagation, compressed degree, changed cycle, and radius of the soliton are all smaller than those before the scattering, but its coherent radius is larger than that before the scattering. In this propagation, the self-focusing plays a key role.展开更多
When pursuing femtosecond-scale ultrashort pulse optical communication, one cannot overlook higher-order nonlinear effects. Based on the fundamental theoretical model of the variable coefficient coupled high-order non...When pursuing femtosecond-scale ultrashort pulse optical communication, one cannot overlook higher-order nonlinear effects. Based on the fundamental theoretical model of the variable coefficient coupled high-order nonlinear Schr¨odinger equation, we analytically explore the evolution of optical solitons in the presence of highorder nonlinear effects. Moreover, the interactions between two nearby optical solitons and their transmission in a nonuniform fiber are investigated. The stability of optical soliton transmission and interactions are found to be destroyed to varying degrees due to higher-order nonlinear effects. The outcomes may offer some theoretical references for achieving ultra-high energy optical solitons in the future.展开更多
The main goal of our study is to reveal unexpected but intriguing analogies arising between optical solitons and nuclear physics,which still remain hidden from us.We consider the main cornerstones of the concept of no...The main goal of our study is to reveal unexpected but intriguing analogies arising between optical solitons and nuclear physics,which still remain hidden from us.We consider the main cornerstones of the concept of nonlinear optics of nuclear reactions and the well-dressed repulsive-core solitons.On the base of this model,we reveal the most intriguing properties of the nonlinear tunneling of nucleus-like solitons and the soliton selfinduced sub-barrier transparency effect.We describe novel interesting and stimulating analogies between the interaction of nucleus-like solitons on the repulsive barrier and nuclear sub-barrier reactions.The main finding of this study concerns the conservation of total number of nucleons(or the baryon number)in nuclear-like soliton reactions.We show that inelastic interactions among well-dressed repulsive-core solitons arise only when a“cloud”of“dressing”spectral side-bands appears in the frequency spectra of the solitons.This property of nucleus-like solitons is directly related to the nuclear density distribution described by the dimensionless small shape-squareness parameter.Thus the Fourier spectra of nucleus-like solitons are similar to the nuclear form factors.We show that the nuclear-like reactions between well-dressed solitons are realized by“exchange”between“particle-like”side bands in their spectra.展开更多
A quasi-phase-matched technique is introduced for soliton transmission in a quadratic[χ^((2))]nonlinear crystal to realize the stable transmission of dipole solitons in a one-dimensional space under three-wave mixing...A quasi-phase-matched technique is introduced for soliton transmission in a quadratic[χ^((2))]nonlinear crystal to realize the stable transmission of dipole solitons in a one-dimensional space under three-wave mixing.We report four types of solitons as dipole solitons with distances between their bimodal peaks that can be laid out in different stripes.We study three cases of these solitons:spaced three stripes apart,one stripe apart,and confined to the same stripe.For the case of three stripes apart,all four types have stable results,but for the case of one stripe apart,stable solutions can only be found atω_(1)=ω_(2),and for the condition of dipole solitons confined to one stripe,stable solutions exist only for Type1 and Type3 atω_(1)=ω_(2).The stability of the soliton solution is solved and verified using the imaginary time propagation method and real-time transfer propagation,and soliton solutions are shown to exist in the multistability case.In addition,the relations of the transportation characteristics of the dipole soliton and the modulation parameters are numerically investigated.Finally,possible approaches for the experimental realization of the solitons are outlined.展开更多
Spinor Bose–Einstein condensates(BECs)are formed when atoms in the multi-component BECs possess single hyperfine spin states but retain internal spin degrees of freedom.This study concentrates on a(1+1)-dimensional t...Spinor Bose–Einstein condensates(BECs)are formed when atoms in the multi-component BECs possess single hyperfine spin states but retain internal spin degrees of freedom.This study concentrates on a(1+1)-dimensional three-couple Gross–Pitaevskii system to depict the macroscopic spinor BEC waves within the meanfield approximation.Regarding the distribution of the atoms corresponding to the three vertical spin projections,a known binary Darboux transformation is utilized to derive the𝑁matter-wave soliton solutions and triple-pole matter-wave soliton solutions on the zero background,where𝑁is a positive integer.For those multiple matterwave solitons,the asymptotic analysis is performed to obtain the algebraic expressions of the soliton components in the𝑁matter-wave solitons and triple-pole matter-wave solitons.The asymptotic results indicate that the matter-wave solitons in the spinor BECs possess the property of maintaining their energy content and coherence during the propagation and interactions.Particularly,in the𝑁matter-wave solitons,each soliton component contributes to the phase shifts of the other soliton components;and in the triple-pole matter-wave solitons,stable attractive forces exist between the different matter-wave soliton components.Those multiple matter-wave solitons are graphically illustrated through three-dimensional plots,density plot and contour plot,which are consistent with the asymptotic analysis results.The present analysis may provide the explanations for the complex natural mechanisms of the matter waves in the spinor BECs,and may have potential applications in designs of atom lasers,atom interferometry and coherent atom transport.展开更多
Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescenc...Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.展开更多
In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to b...In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.展开更多
For a multi-component Maccari system with two spatial dimensions,nondegenerate one-soliton and two-soliton solutions are obtained with the bilinear method.It can be seen by drawing the spatial graphs of nondegenerate ...For a multi-component Maccari system with two spatial dimensions,nondegenerate one-soliton and two-soliton solutions are obtained with the bilinear method.It can be seen by drawing the spatial graphs of nondegenerate solitons that the real component of the system shows a cross-shaped structure,while the two solitons of the complex component show a multi-solitoff structure.At the same time,the asymptotic analysis of the interaction behavior of the two solitons is conducted,and it is found that under partially nondegenerate conditions,the real and complex components of the system experience elastic collision and inelastic collision,respectively.展开更多
Solitons,the distinct balance between nonlinearity and dispersion,provide a route toward ultrafast electromagnetic pulse shaping,high-harmonic generation,real-time image processing,and RF photonic communications.Here ...Solitons,the distinct balance between nonlinearity and dispersion,provide a route toward ultrafast electromagnetic pulse shaping,high-harmonic generation,real-time image processing,and RF photonic communications.Here we uniquely explore and observe the spatio-temporal breather dynamics of optical soliton crystals in frequency microcombs,examining spatial breathers,chaos transitions,and dynamical deterministic switching–in nonlinear measurements and theory.To understand the breather solitons,we describe their dynamical routes and two example transitional maps of the ensemble spatial breathers,with and without chaos initiation.We elucidate the physical mechanisms of the breather dynamics in the soliton crystal microcombs,in the interaction plane limit cycles and in the domain-wall understanding with parity symmetry breaking from third-order dispersion.We present maps of the accessible nonlinear regions,the breather frequency dependences on third-order dispersion and avoided-mode crossing strengths,and the transition between the collective breather spatio-temporal states.Our range of measurements matches well with our first-principles theory and nonlinear modeling.To image these soliton ensembles and their breathers,we further constructed panoramic temporal imaging for simultaneous fast-and slow-axis two-dimensional mapping of the breathers.In the phasedifferential sampling,we present two-dimensional evolution maps of soliton crystal breathers,including with defects,in both stable breathers and breathers with drift.Our fundamental studies contribute to the understanding of nonlinear dynamics in soliton crystal complexes,their spatio-temporal dependences,and their stability-existence zones.展开更多
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si...By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.展开更多
As a key component in all-optical networks,all-optical switches play a role in constructing all-optical switching.Due to the absence of photoelectric conversion,all-optical networks can overcome the constraints of ele...As a key component in all-optical networks,all-optical switches play a role in constructing all-optical switching.Due to the absence of photoelectric conversion,all-optical networks can overcome the constraints of electronic bottlenecks,thereby improving communication speed and expanding their communication bandwidth.We study all-optical switches based on the interactions among three optical solitons.By analytically solving the coupled nonlinear Schr¨odinger equation,we obtain the three-soliton solution to the equation.We discuss the nonlinear dynamic characteristics of various optical solitons under different initial conditions.Meanwhile,we analyze the influence of relevant physical parameters on the realization of all-optical switching function during the process of three-soliton interactions.The relevant conclusions will be beneficial for expanding network bandwidth and reducing power consumption to meet the growing demand for bandwidth and traffic.展开更多
Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped exc...Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped excitons(STEs)emission mechanisms of Cu(I)halides are well understood,the STEs in Ag(I)halides remain less thoroughly explored.This study explores the STE emission efficiency within the A_(2)AgX_(3)(A=Rb,Cs;X=Cl,Br,I)system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams.We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers.Moreover,we investigate the impact of structural compactness on emission efficiency and find that the excessive electron–phonon coupling in this system can be reduced by increasing the structural compactness.The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs_(2)AgX_(3) and Rb_(2)AgX_(3) systems.These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials.The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094.展开更多
基金Supported by the Natural Science Foundation of Hubei Province under Grant No 2004ABA112, and the Research Programme of The Hong Kong Polytechnic University under Grant No A-PA2Q.
文摘Two coupled dark solitons are considered in a two-component Bose-Einstein condensate, and their dynamics are investigated by the variational approach based the renormalized integrals of motion. The stationary states as physical solutions to the describing equations are obtained, and the dynamic mechanism is demonstrated by performing a coordinate of a classical particle moving in an effective potential field. The switching and selftrapping dynamics of the coupled dark vector solitons are discussed by the evolution of the atom population transferring ratio.
文摘The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots
基金Project supported by the Ministry of Education,Science and Technological Development of the Republic of Serbiathe Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (Grant No.K2-2019-010)the Project within the Cooperation Agreement between the JINR,Dubna,Russian Federation and Ministry of Education and Science of the Republic of Serbia。
文摘We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed.
基金supported by the National Natural Science Foundation of China (Grant No.1057400)the Natural Science Foundation of Heilongjiang Province,China (Grant No.A200506)
文摘We investigate the interactions of lattice pbonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that the self-trapping can also appear in two-dimensional molecular lattice with a harmonic and nonlinear potential. The exciton effect on molecular lattice does not distort the molecular lattice but only makes it localized and the localization can also react, again through phonon coupling, to trap the energy and prevents its dispersion.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10847006 and 10874142
文摘We investigate the self-trapping of a Bose Josephson junction, which is dispersively coupled to a driven optical cavity. The cavity-induced nonlinearity is presented analytically, and its effect results in the appearance of the self-trapping for the Bose-Einstein condensates in the Josephson oscillation regime. In addition, there exists competition between the nonlinearities induced by the interatomic interaction and by the driven cavity for the emergences of self-trapping. Our results show that the driven cavity can be utilized as a possible tool to produce the self-trapping for the condensates with weak interatomic interaction.
基金supported by the National Natural Science Foundation of China (Grant No 1057400)the Natural Science Foundation of Heilongjiang Province of China (Grant No A200506)
文摘We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of multiplescale, and obtain that the self-trapping can also appear in the two-dimensional discrete molecular lattice with harmonic and nonlinear potential. The excitons' effect on the molecular lattice does not distort it but only causes it to localize which enables it to react again through phonon coupling to trap the energy and prevent its dispersion.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA01020304)the National Natural Science Foundation of China(Grant Nos.11275156,91026005,11365020,and 11047010)
文摘We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose--Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different cases of Josephson oscillation (JO), oscillating-phase-type self-trapping (OPTST), running-phase-type self-trapping (RPTST), and self-trapping (ST). It is found that the s-wave scattering lengths have a crucial role on the tunneling dynamics. By adjusting the scattering length in the adiabatic condition, the transition probability changes with the adiabatic periodicity and a rectangular periodic pattern emerges. The periodicity of the rectangular wave depends on the system parameters such as the periodicity of the adjustable parameter, the s-wave scattering length.
文摘The tungsten are deemed to be the most promising candidates as plasma facing material due to its high melting temperature, good thermal properties, low sputtering yields[1]. In the near surface of plasma facing materials high densities of interstitials and vacancies are produced in addition to high concentrations of hydrogen and helium (He). He easily are trapped by vacancies, dislocations, grain boundaries to form He bubble nucleation. When no traps are available, He spontaneously form clusters, which result in strong lattice strain. It can be relieved by ejecting one or more matrix atoms to form one or more Frenkel Pairs, i:e:vacancies and self-interstitial atoms. He cluster will be trapped by the vacancy it created, this is a self-trapping event[2].
基金Natural Science Basic Research Project for Education Depart ment of Henan Province Natural ScienceFoundation of Zhumadian City(058001)
文摘Using the mutually coherent function, the self-trapping of the circle partially coherent optical beam in the total internal reflective photonic crystal fiber(TIRPCF) under Compton scattering is studied. The study shows that the composition of the non-coherent optical beam in the optical spectrum and the diffraction effect are decreased by Compton scattering, and the probability of forming the soliton is greatly increased. The vibration peak value in the propagation, compressed degree, changed cycle, and radius of the soliton are all smaller than those before the scattering, but its coherent radius is larger than that before the scattering. In this propagation, the self-focusing plays a key role.
基金supported by the Scientific Research Foundation of Weifang University of Science and Technology (Grant Nos.KJRC2022002 and KJRC2023035)。
文摘When pursuing femtosecond-scale ultrashort pulse optical communication, one cannot overlook higher-order nonlinear effects. Based on the fundamental theoretical model of the variable coefficient coupled high-order nonlinear Schr¨odinger equation, we analytically explore the evolution of optical solitons in the presence of highorder nonlinear effects. Moreover, the interactions between two nearby optical solitons and their transmission in a nonuniform fiber are investigated. The stability of optical soliton transmission and interactions are found to be destroyed to varying degrees due to higher-order nonlinear effects. The outcomes may offer some theoretical references for achieving ultra-high energy optical solitons in the future.
文摘The main goal of our study is to reveal unexpected but intriguing analogies arising between optical solitons and nuclear physics,which still remain hidden from us.We consider the main cornerstones of the concept of nonlinear optics of nuclear reactions and the well-dressed repulsive-core solitons.On the base of this model,we reveal the most intriguing properties of the nonlinear tunneling of nucleus-like solitons and the soliton selfinduced sub-barrier transparency effect.We describe novel interesting and stimulating analogies between the interaction of nucleus-like solitons on the repulsive barrier and nuclear sub-barrier reactions.The main finding of this study concerns the conservation of total number of nucleons(or the baryon number)in nuclear-like soliton reactions.We show that inelastic interactions among well-dressed repulsive-core solitons arise only when a“cloud”of“dressing”spectral side-bands appears in the frequency spectra of the solitons.This property of nucleus-like solitons is directly related to the nuclear density distribution described by the dimensionless small shape-squareness parameter.Thus the Fourier spectra of nucleus-like solitons are similar to the nuclear form factors.We show that the nuclear-like reactions between well-dressed solitons are realized by“exchange”between“particle-like”side bands in their spectra.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274077 and 11874112)the Research Fund of the Guangdong Hong Kong Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(Grant No.2020B1212030010)the Graduate Innovative Talents Training Program of Foshan University.
文摘A quasi-phase-matched technique is introduced for soliton transmission in a quadratic[χ^((2))]nonlinear crystal to realize the stable transmission of dipole solitons in a one-dimensional space under three-wave mixing.We report four types of solitons as dipole solitons with distances between their bimodal peaks that can be laid out in different stripes.We study three cases of these solitons:spaced three stripes apart,one stripe apart,and confined to the same stripe.For the case of three stripes apart,all four types have stable results,but for the case of one stripe apart,stable solutions can only be found atω_(1)=ω_(2),and for the condition of dipole solitons confined to one stripe,stable solutions exist only for Type1 and Type3 atω_(1)=ω_(2).The stability of the soliton solution is solved and verified using the imaginary time propagation method and real-time transfer propagation,and soliton solutions are shown to exist in the multistability case.In addition,the relations of the transportation characteristics of the dipole soliton and the modulation parameters are numerically investigated.Finally,possible approaches for the experimental realization of the solitons are outlined.
基金work was supported by the National Natural Science Foundation of China(Grant No.12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics(Grant No.NCYWT23036)+2 种基金the Young innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region“Five Ma-jor Tasks"Research Special Project for the Inner Mongo-lia University of Finance and Economics in 2024(Grant No.NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Fi-nance and Economics in 2024(Grant No.GZCG2426)the Talent Development Fund of Inner Mongolia.
文摘Spinor Bose–Einstein condensates(BECs)are formed when atoms in the multi-component BECs possess single hyperfine spin states but retain internal spin degrees of freedom.This study concentrates on a(1+1)-dimensional three-couple Gross–Pitaevskii system to depict the macroscopic spinor BEC waves within the meanfield approximation.Regarding the distribution of the atoms corresponding to the three vertical spin projections,a known binary Darboux transformation is utilized to derive the𝑁matter-wave soliton solutions and triple-pole matter-wave soliton solutions on the zero background,where𝑁is a positive integer.For those multiple matterwave solitons,the asymptotic analysis is performed to obtain the algebraic expressions of the soliton components in the𝑁matter-wave solitons and triple-pole matter-wave solitons.The asymptotic results indicate that the matter-wave solitons in the spinor BECs possess the property of maintaining their energy content and coherence during the propagation and interactions.Particularly,in the𝑁matter-wave solitons,each soliton component contributes to the phase shifts of the other soliton components;and in the triple-pole matter-wave solitons,stable attractive forces exist between the different matter-wave soliton components.Those multiple matter-wave solitons are graphically illustrated through three-dimensional plots,density plot and contour plot,which are consistent with the asymptotic analysis results.The present analysis may provide the explanations for the complex natural mechanisms of the matter waves in the spinor BECs,and may have potential applications in designs of atom lasers,atom interferometry and coherent atom transport.
基金supported by the Guangdong Provincial Science&Technology Project(No.2023A0505050084)the National Natural Science Foundation of China(No.22361132525)+1 种基金the Fundamental Research Funds for the Central Universities(No.2023ZYGXZR002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01X137).
文摘Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.
基金Supported by the National Natural Science Foundation of China(11771020,12171005).
文摘In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.
基金supported by the National Natural Science Foundation of China(Grant No.12375006)。
文摘For a multi-component Maccari system with two spatial dimensions,nondegenerate one-soliton and two-soliton solutions are obtained with the bilinear method.It can be seen by drawing the spatial graphs of nondegenerate solitons that the real component of the system shows a cross-shaped structure,while the two solitons of the complex component show a multi-solitoff structure.At the same time,the asymptotic analysis of the interaction behavior of the two solitons is conducted,and it is found that under partially nondegenerate conditions,the real and complex components of the system experience elastic collision and inelastic collision,respectively.
基金supported by the Office of Naval Research and the Office of Naval Research MURI program,DARPA,National Science Foundation,and Lawrence-Livermore National Laboratory.
文摘Solitons,the distinct balance between nonlinearity and dispersion,provide a route toward ultrafast electromagnetic pulse shaping,high-harmonic generation,real-time image processing,and RF photonic communications.Here we uniquely explore and observe the spatio-temporal breather dynamics of optical soliton crystals in frequency microcombs,examining spatial breathers,chaos transitions,and dynamical deterministic switching–in nonlinear measurements and theory.To understand the breather solitons,we describe their dynamical routes and two example transitional maps of the ensemble spatial breathers,with and without chaos initiation.We elucidate the physical mechanisms of the breather dynamics in the soliton crystal microcombs,in the interaction plane limit cycles and in the domain-wall understanding with parity symmetry breaking from third-order dispersion.We present maps of the accessible nonlinear regions,the breather frequency dependences on third-order dispersion and avoided-mode crossing strengths,and the transition between the collective breather spatio-temporal states.Our range of measurements matches well with our first-principles theory and nonlinear modeling.To image these soliton ensembles and their breathers,we further constructed panoramic temporal imaging for simultaneous fast-and slow-axis two-dimensional mapping of the breathers.In the phasedifferential sampling,we present two-dimensional evolution maps of soliton crystal breathers,including with defects,in both stable breathers and breathers with drift.Our fundamental studies contribute to the understanding of nonlinear dynamics in soliton crystal complexes,their spatio-temporal dependences,and their stability-existence zones.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175111 and 12235007)the K.C.Wong Magna Fund in Ningbo University。
文摘By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.
基金supported by the Scientific Research Foundation of Weifang University of Science and Technology(Grant Nos.KJRC2022002 and KJRC2023035)。
文摘As a key component in all-optical networks,all-optical switches play a role in constructing all-optical switching.Due to the absence of photoelectric conversion,all-optical networks can overcome the constraints of electronic bottlenecks,thereby improving communication speed and expanding their communication bandwidth.We study all-optical switches based on the interactions among three optical solitons.By analytically solving the coupled nonlinear Schr¨odinger equation,we obtain the three-soliton solution to the equation.We discuss the nonlinear dynamic characteristics of various optical solitons under different initial conditions.Meanwhile,we analyze the influence of relevant physical parameters on the realization of all-optical switching function during the process of three-soliton interactions.The relevant conclusions will be beneficial for expanding network bandwidth and reducing power consumption to meet the growing demand for bandwidth and traffic.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62125402 and 62321166653).
文摘Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped excitons(STEs)emission mechanisms of Cu(I)halides are well understood,the STEs in Ag(I)halides remain less thoroughly explored.This study explores the STE emission efficiency within the A_(2)AgX_(3)(A=Rb,Cs;X=Cl,Br,I)system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams.We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers.Moreover,we investigate the impact of structural compactness on emission efficiency and find that the excessive electron–phonon coupling in this system can be reduced by increasing the structural compactness.The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs_(2)AgX_(3) and Rb_(2)AgX_(3) systems.These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials.The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094.