In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions ...In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions are obtained.展开更多
In this paper, we consider the existence of multiple positive solutions of discrete boundary value problem. The theory of fixed point index is used here to derive the existence theorem.
This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of...This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of at least three positive T-periodic solutions are established by using a fixed point theorem due to Avery and Peterson.展开更多
Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is estab...Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is established.展开更多
Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. For any subset K of C and any integer m≥1, write A(D m,K)={f|f∶D m→K is a cont...Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. For any subset K of C and any integer m≥1, write A(D m,K)={f|f∶D m→K is a continuous map, and f|(D m)° is analytic}. For H∈ A(D m,C)(m≥2), f∈A(D,D) and z∈D, write Ψ H(f)(z)=H(z,f(z),...,f m-1(z)). Suppose F,G∈A(D 2n+1,C), and H k,K k∈A(D k,C), k=2,...,n. In this paper, the system of functional equations F(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0 G(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0(z∈D) is studied and some conditions for the system of equations to have a solution or a unique solution in A(D,D)×A(D,D) are given.展开更多
In this article we consider via critical point theory the existence of homoclinic orbits of the first-order differential difference equation z(t)+B(t)z(t)+f(t,z(t+τ),z(t),z(t-τ))=0.
By using critical point theory,we study periodic solutions for a class of fourthorder difference systems with partially periodic potential and linear nonlinearity.Some sufficient conditions for the existence of multip...By using critical point theory,we study periodic solutions for a class of fourthorder difference systems with partially periodic potential and linear nonlinearity.Some sufficient conditions for the existence of multiplicity of periodic solutions are obtained via generalized saddle point theorem.展开更多
In this paper, we apply a cone theoretic fixed point theorem to obtain sufficient conditions for the existence of multiple positive periodic solutions to the higher-dimensional functional difference equations of the f...In this paper, we apply a cone theoretic fixed point theorem to obtain sufficient conditions for the existence of multiple positive periodic solutions to the higher-dimensional functional difference equations of the form:x(n+ 1) =A(n)x(n) +λh(n)f(x(n- τ(n))), n∈ Z.展开更多
Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. Write A(D,D)={f: f is a continuous map from D into itself, and ...Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. Write A(D,D)={f: f is a continuous map from D into itself, and f|D ° is analytic}. Suppose G,H: D 2n+1 →C are continuous maps (n≥2), and G|(D 2n+1 ) °, H|(D 2n+1 ) ° are analytic. In this paper, we study the system of iterative functional equationsG(z,f(z),…,f n(z), g(z),…,g n(z))=0, H(z,f(z),…,f n(z), g(z),…,g n(z))=0, for any z∈D,and give some conditions for the system of equations to have a solution or a unique solution in A(D,D) ×A(D,D).展开更多
The compactness criterion in l◇={x(·)∈l^∞(0,∞))|lim t→∞ x(t)=x(∞)} is given and as an application,we study the existence of positive solutions of second order boundary value problems of differenc...The compactness criterion in l◇={x(·)∈l^∞(0,∞))|lim t→∞ x(t)=x(∞)} is given and as an application,we study the existence of positive solutions of second order boundary value problems of difference equation on the half line by the fixedpoint theorem in cones.展开更多
In this paper, the author obtains the existence of positive solutions of nonlinear neutral differential difference equations in a Banach space by means of the fixed point theorems.
In this paper, by using the fixed point index theory, we obtain an existence criteria for multiple positive solution of nonlinear neutral difference equation.The result is illustrated by an example.
In this paper, by using the fixed point index theory, we obtain an existence criteria for multiple positive solution of non-autonomous nonlinear neutral difference equation. We extend the results in [1].
In this paper, we consider the existence of periodic solutions to a class of second order self-adjoint difference equations. By the least action principle and saddle point theorem in the critical point theory, some ne...In this paper, we consider the existence of periodic solutions to a class of second order self-adjoint difference equations. By the least action principle and saddle point theorem in the critical point theory, some new results are obtained. As an application, we also give two examples to demonstrate our main results.展开更多
By critical point theory, a new approach is provided to study the existence and multiplicity results of periodic and subharmonic solutions for difference equations. For secord-order difference equations $$\Delta ^2 x_...By critical point theory, a new approach is provided to study the existence and multiplicity results of periodic and subharmonic solutions for difference equations. For secord-order difference equations $$\Delta ^2 x_{n - 1} + f(n, x_n ) = 0,$$ some new results are obtained for the above problems when f(t, z) has superlinear growth at zero and at infinity in z.展开更多
In this paper, a 2 nth-order nonlinear difference equation is considered.Using the critical point theory, we establish various sets of sufficient conditions of the nonexistence and existence of periodic solutions.Resu...In this paper, a 2 nth-order nonlinear difference equation is considered.Using the critical point theory, we establish various sets of sufficient conditions of the nonexistence and existence of periodic solutions.Results obtained complement or improve the existing ones.展开更多
文摘In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions are obtained.
文摘In this paper, we consider the existence of multiple positive solutions of discrete boundary value problem. The theory of fixed point index is used here to derive the existence theorem.
基金Supported by the Natural Science Foundation of Hunan Province(12JJ6006) Supported by the Science Foundation of Department of Science and Technology of Hunan Province(2012FJ3107)
文摘This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of at least three positive T-periodic solutions are established by using a fixed point theorem due to Avery and Peterson.
文摘Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is established.
基金Supported by the National Natural Science Foundation of China (1 0 2 2 6 0 1 4) ,Guangxi Science Foun-dation (0 2 2 90 0 1 )
文摘Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. For any subset K of C and any integer m≥1, write A(D m,K)={f|f∶D m→K is a continuous map, and f|(D m)° is analytic}. For H∈ A(D m,C)(m≥2), f∈A(D,D) and z∈D, write Ψ H(f)(z)=H(z,f(z),...,f m-1(z)). Suppose F,G∈A(D 2n+1,C), and H k,K k∈A(D k,C), k=2,...,n. In this paper, the system of functional equations F(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0 G(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0(z∈D) is studied and some conditions for the system of equations to have a solution or a unique solution in A(D,D)×A(D,D) are given.
基金supported by National Natural Science Foundation of China(51275094)by High-Level Personnel Project of Guangdong Province(2014011)by China Postdoctoral Science Foundation(20110490893)
文摘In this article we consider via critical point theory the existence of homoclinic orbits of the first-order differential difference equation z(t)+B(t)z(t)+f(t,z(t+τ),z(t),z(t-τ))=0.
基金Supported by the National Natural Science Foundation of China(31260098)
文摘By using critical point theory,we study periodic solutions for a class of fourthorder difference systems with partially periodic potential and linear nonlinearity.Some sufficient conditions for the existence of multiplicity of periodic solutions are obtained via generalized saddle point theorem.
基金Project(10471153) supported by the National Natural Science Foundation of China project supported by the Natural Science Foundation of Central South University
文摘In this paper, we apply a cone theoretic fixed point theorem to obtain sufficient conditions for the existence of multiple positive periodic solutions to the higher-dimensional functional difference equations of the form:x(n+ 1) =A(n)x(n) +λh(n)f(x(n- τ(n))), n∈ Z.
文摘Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. Write A(D,D)={f: f is a continuous map from D into itself, and f|D ° is analytic}. Suppose G,H: D 2n+1 →C are continuous maps (n≥2), and G|(D 2n+1 ) °, H|(D 2n+1 ) ° are analytic. In this paper, we study the system of iterative functional equationsG(z,f(z),…,f n(z), g(z),…,g n(z))=0, H(z,f(z),…,f n(z), g(z),…,g n(z))=0, for any z∈D,and give some conditions for the system of equations to have a solution or a unique solution in A(D,D) ×A(D,D).
基金The NSF(11626188,11671322)of ChinaGansu Provincial NSF(1606RJYA232)of China and NWNU-LKQN-15-16
文摘The compactness criterion in l◇={x(·)∈l^∞(0,∞))|lim t→∞ x(t)=x(∞)} is given and as an application,we study the existence of positive solutions of second order boundary value problems of difference equation on the half line by the fixedpoint theorem in cones.
基金This work is supported by the National Natural Sciences Foundation of China and Shandong Province,and the Doctoral Foundation
文摘In this paper, the author obtains the existence of positive solutions of nonlinear neutral differential difference equations in a Banach space by means of the fixed point theorems.
文摘In this paper, by using the fixed point index theory, we obtain an existence criteria for multiple positive solution of nonlinear neutral difference equation.The result is illustrated by an example.
文摘In this paper, by using the fixed point index theory, we obtain an existence criteria for multiple positive solution of non-autonomous nonlinear neutral difference equation. We extend the results in [1].
基金supported by Science and Technology Plan Foundation of Guangzhou(No.2006J1-C0341)
文摘In this paper, we consider the existence of periodic solutions to a class of second order self-adjoint difference equations. By the least action principle and saddle point theorem in the critical point theory, some new results are obtained. As an application, we also give two examples to demonstrate our main results.
基金This work was supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE of Chinaby the Trans-Century Training Programme Foundation for the Talents of the State Education Commissionby the National Natural Science Foundation of China(Grant No.19831030).
文摘By critical point theory, a new approach is provided to study the existence and multiplicity results of periodic and subharmonic solutions for difference equations. For secord-order difference equations $$\Delta ^2 x_{n - 1} + f(n, x_n ) = 0,$$ some new results are obtained for the above problems when f(t, z) has superlinear growth at zero and at infinity in z.
基金supported by Specialized Fund for the Doctoral Program of Higher Eduction (Grant No.20071078001)National Natural Science Foundation of China (Grant No.10625104)Natural Science and Engineering Reserach Council of Canada (NSERC)
文摘In this paper, a 2 nth-order nonlinear difference equation is considered.Using the critical point theory, we establish various sets of sufficient conditions of the nonexistence and existence of periodic solutions.Results obtained complement or improve the existing ones.