Temperature, as an important feature of hydroponic nutrient solution, is closely related to dissolved oxygen content of nutrient solution and growth status of plant roots. How to precisely adjust the temperature of nu...Temperature, as an important feature of hydroponic nutrient solution, is closely related to dissolved oxygen content of nutrient solution and growth status of plant roots. How to precisely adjust the temperature of nutrient solution is the key to obtain high quality and high yield of hydroponic vegetables over summer. With Lactuca sativa vat. crispa 'Luosheng No.3' as the test material, the effect of chiller cooling technology on the temperature of nutrient solution, as well as on the yield and quality of Luosheng No.3, in over-summer hydroponic cultivation was studied. The results showed that the chiller cooling technology controlled the nutrient solution temperature in a reasonable range ((20 ± 1)℃) and promoted the growth and dry matter accumulation of Luosheng No.3, instead of affecting the quality. In short, the chiller cooling technology is applicable to the temperature regulation of nutrient solu- tion in hydroponics over summer.展开更多
The microstructure changed markedly with increasing solution temperature, i.e eutectic γ' phases and coarse primary γ' phase are redissolved continuously into matrix, which was finished at 1250-1260℃, and m...The microstructure changed markedly with increasing solution temperature, i.e eutectic γ' phases and coarse primary γ' phase are redissolved continuously into matrix, which was finished at 1250-1260℃, and more and finer γ' phases are reprecipitated. The grain boundary morphology changed gradually to 'fine line' form. The dendritic segregation of elements decreased. With raising solution temperature the longitudinal stress-rupture life at high and intermediate temperature were enhanced, but the transversal stress-rupture life at intermediate temperature decreased obviously. The incipient melting temperature of DZ22 alloy was measured to be 1230-1240℃ and may be increased by homogenization at 1150℃. In this paper the principle of determining solution temperature of DS alloys was discussed. It was suggested that the solution temperature of alloy DZ22 selected at 1200-1210℃ is appropri- ate.展开更多
Objective To evaluate the effect of tumescent infiltration solution temperature on core body temperatureafter liposuction.Methods 15 healthy female subjects were randomly divided into 2 groups to receive tumescent inf...Objective To evaluate the effect of tumescent infiltration solution temperature on core body temperatureafter liposuction.Methods 15 healthy female subjects were randomly divided into 2 groups to receive tumescent infiltration展开更多
Evolution laws of microstructures,mechanical properties,and fractographs after different solution temperatures were investigated through various analysis methods.With the increasing solution temperatures,contents of t...Evolution laws of microstructures,mechanical properties,and fractographs after different solution temperatures were investigated through various analysis methods.With the increasing solution temperatures,contents of the primaryαphase decreased,and contents of transformedβstructures increased.Lamellarαgrains dominated the characteristics of transformedβstructures,and widths of secondaryαlamellas increased monotonously.For as-forged alloy,large silicides with equiaxed and rod-like morphologies,and nano-scale silicides were found.Silicides with large sizes might be(Ti,Zr,Nb)_(5)Si_(3) and(Ti,Zr,Nb)_(6)Si_(3).Rod-like silicides with small sizes precipitated in retainedβphase,exhibiting near 45°angles withα/βboundaries.Retainedβphases in as-heat treated alloys were incontinuous.980STA exhibited an excellent combination of room temperature(RT)and 650°C mechanical properties.Characteristics of fracture surfaces largely depended on the evolutions of microstructures.Meanwhile,silicides promoted the formation of mico-voids.展开更多
Phase transition behavior and influence of ions on the thermo-sensitive polyamide with polyethylene glycol as the main chain were studied in detail. By measuring the light transmission rates of polymer solutions, the ...Phase transition behavior and influence of ions on the thermo-sensitive polyamide with polyethylene glycol as the main chain were studied in detail. By measuring the light transmission rates of polymer solutions, the change of its lower critical solution temperature (LCST) in the salt solution was investigated. It was found that a reversible phase transition of the polyamide occurred at the LCST and finished in a narrow temperature range. The LCST was associated with species of ions in salt solution. Anions had a great impact on the phase transition performance of the thermo-sensitive polyamide, while the cations had a slight influence on the phase transition. Different anions had different coagulation ability to ‘salt-out' the polyamide. The order was: CO2-3〉SiO2-3〉HPO2-4〉OH-〉Cl-〉HCO3-〉HSOa-〉NO2-〉NO3-.展开更多
The thermosensitive poly ( N-isopropylacrylamide ) (PNIPAAm) and poly (N-isopropylacrylamide-co-acrylamide) [ poly (NIPAAm-co-AAm) ] hydrogels with different acrylamide molar percentage are prepared by radiati...The thermosensitive poly ( N-isopropylacrylamide ) (PNIPAAm) and poly (N-isopropylacrylamide-co-acrylamide) [ poly (NIPAAm-co-AAm) ] hydrogels with different acrylamide molar percentage are prepared by radiation polymerization using Co^60 γ-ray. Their swelling equilibrium data in the media of deionized water, NaCl aqueous solutions and different pH buffer solutions are determined. It appears that lower critical solution temperature (LCST) of the hydrogels will drop with the increase of ionic strength and increase with the rising of acrylamide content, A semi-empirical formula is set up with the experimental results. Moreover, it also indicates that this copolymer is pH-sensitive, which is similar to the homopolymer of PNIPAAm.展开更多
Metal-organic frameworks are compounds with a reticulated skeletal structure formed by chemically bonding inorganic and organic units that are widely used in many fields, such as photocatalysis, gas separation and ene...Metal-organic frameworks are compounds with a reticulated skeletal structure formed by chemically bonding inorganic and organic units that are widely used in many fields, such as photocatalysis, gas separation and energy storage, because of their unique structures. In this paper, we prepared a metal-organic framework [(<em>μ</em><sub>2</sub>-2-methylimidazolyl)<sub>12</sub>-Zn(ii)<sub>6</sub>-H<sub>18</sub>O<sub>10</sub>]<sub>n</sub>(ZM) with well-developed pores and high specific surface area of MOFs by the solution method. And MOF-derived porous carbon was prepared by the direct charring method in an argon atmosphere using a mixture of ZM, ZM and potassium citrate as carbon precursors. Characterization analysis revealed that the maximum specific surface area of ZMPC-800-1:15 was 2014.97 m<sup>2</sup><span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, and the pore size structure was mainly mesoporous. At a current density of 1.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> the specific capacitance of ZMC-800 and ZMPC-800-1:15 was 121.3 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> and 226.6 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, respectively, with a substantial increase of 86.8%. The specific capacitance of ZMPC-800-1:15 decays to 168.8 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, with a decay rate of 25.5%, when the current density increases to 10.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>. After 5000 constant current charge/ discharge cycles, the capacitance retention rate was still 96.41%. These results prove that the application of MOF-derived carbon materials in future supercapacitors is very promising.展开更多
The stimuli-responsive polymers with upper critical solution temperatures(UCST) are highly attractive for drug delivery applications. However, the phase transition process of UCST polymer is usually characterized by t...The stimuli-responsive polymers with upper critical solution temperatures(UCST) are highly attractive for drug delivery applications. However, the phase transition process of UCST polymer is usually characterized by turbidity measurement and electron microscopy, which are significantly restricted by low sensitivity and static observation. In contrary, the fluorescence technique has significant advantages in terms of high sensitivity, easy operation, and dynamic observation. However, the conventional fluorophores suffer from the drawbacks of aggregation-caused quenching(ACQ) after being encapsulated by UCST polymers, which are not suitable for direct visualization of the phase transition process. To tackle this challenge, we herein developed a series of UCST polymers based on polyacrylamides decorated with bile acid and aggregation-induced emission(AIE)-active tetraphenylethene(TPE) groups, which can be used for direct fluorescence monitoring of the phase transition process. Moreover, the AIE-active UCST polymers can serve as drug carriers, which can not only monitor the drug release process under thermal stimuli, but also verify the drug release by fluorescence recovery after thermal stimuli. It is expected that the AIE-active UCST polymers with self-monitoring ability are promising for biomedical applications.展开更多
The secondary phases of the steels have significant effects on the microstructure and mechanical properties, making controlling these secondary phases important. The control of MnS inclusions and A1N precipitates in a...The secondary phases of the steels have significant effects on the microstructure and mechanical properties, making controlling these secondary phases important. The control of MnS inclusions and A1N precipitates in a N-alloyed high-Mn twin-induced plastic cryogenic steel via solution treatment was investigated with several different techniques including microstructural characterization, 298 K tensile testing, and 77 K impact testing. The solutionizing temperature (ST) increased from 1323 to 1573 K, where the elongated MnS inclusions and large-sized AlN precipitates became spheroidized and dissolved. The aspect ratio of the MnS inclusions decreased as the ST increased and the number density increased. The impact toughness of the steels showed anisotropy and low impact energy values, due to the elongated MnS inclusions and large-sized AIN precipitates. The anisotropy was eliminated by spheroidizing the MnS inclusions. The impact energy was improved by dissolving the large-sized AlN precipitates during the solution treatment. The austenite grain size increased when the dissolution of the AlN precipitate increased, but the effect of the grain size on the yield strength, toughness, and the strength--ductility balance was weak.展开更多
Near-infrared light(NIR)triggered transdermal drug delivery systems are of great interest due to their on-demand drug release,which enable to enhance drug treatment efficiency as well as reduce side effect.Herein,a NI...Near-infrared light(NIR)triggered transdermal drug delivery systems are of great interest due to their on-demand drug release,which enable to enhance drug treatment efficiency as well as reduce side effect.Herein,a NIR-triggered microneedle(MN)patch array has been fabricated through depositing the photothermal conversion agent and anti-diabetic drug-loaded polymer vesicles with upper critical solution temperature(UCST)into dissolvable polymer matrix.The UCST-type polymer has a clearing point temperature of 41℃ and the drug-loaded polymer vesicles present excellent NIR-triggered and temperature responsive drug release behavior in vitro due to the disassociation of polymer vesicles upon NIR irradiation.After applying MNs to diabetic rats,significant hypoglycemic effect is achieved upon interval NIR irradiation and the blood glucose concentration can decrease to normal state for several hours,which enables to achieve the goal of on-demand drug release.This work suggests that the NIR-triggered MN drug release device has a potential application in the treatment of diabetes,especially for those requiring an active drug release manner.展开更多
Thermoresponsive hydrogels have been designed for smart windows to dynamically modulate solar radiation,but their inherent drawbacks of long response time and imperfectly matched phase transition temperature have limi...Thermoresponsive hydrogels have been designed for smart windows to dynamically modulate solar radiation,but their inherent drawbacks of long response time and imperfectly matched phase transition temperature have limited their wide applications.This work reports a novel composite hydrogel consisting of hydroxypropyl cellulose,polyacrylic acid,and carbon quantum dots with intriguing features of tunable transition temperature and enhanced switching speed.The composite hydrogel demonstrated flexible tunability in transition temperature by controlling the hydrogen ion concentration and a fast response speed by dopping with carbon dots for efficient photothermal conversion.The building energy simulation was carried out to investigate the impacts of transition temperature variations and solar regulations on the space cooling/heating loads under different climate conditions,revealing the necessity of tunability of both transition temperature and solar transmittance in thermochromic smart windows.This novel design of thermochromic composite hydrogel provides insight into theoretical and experimental support for future adaptive building envelopes.展开更多
Lower critical solution temperature(LCST)is the critical temperature below which the solution is miscible for all compositions and above which the solution becomes a suspension.The study of LCST properties has become ...Lower critical solution temperature(LCST)is the critical temperature below which the solution is miscible for all compositions and above which the solution becomes a suspension.The study of LCST properties has become a central research topic due to its profound impact on the applications of stimuli-responsive materials.Inspired by the marriage between materials science and supramolecular chemistry,the introduction of supramolecular pairs and interactions into polymeric LCST systems is increasingly practiced.Especially,supramolecular interactions provide precise control over LCST behavior in both water and organic solvents.Furthermore,supramolecular interactions not only control or adjust LCST behavior(supramolecular interaction controlled LCST),but also induce LCST phase behavior in species lack of thermo-sensitive properties(supramolecular interaction induced LCST).In this review,we summarize the applications of supramolecular interactions in LCST systems.By examining the relationship between supramolecular interactions and LCST changes,we further discuss the differences between supramolecular interaction controlled LCST and supramolecular interaction induced LCST.We hope this review will give our readers a snapshot on how the supramolecular interactions influence the LCST behavior in various systems,and benefit them with different applications.展开更多
Circular double stranded DNA has different topological states which are defined by their linking numbers. Equilibrium distribution of linking numbers can be obtained by closing
The synthesis of active electrode materials at room temperature is one of the effective strategies to reduce the fabrication cost of sodium ion batteries(SIBs).Herein,a layered material(Na_(2)[(VO)_(2)(HPO_(4))_(2)C_(...The synthesis of active electrode materials at room temperature is one of the effective strategies to reduce the fabrication cost of sodium ion batteries(SIBs).Herein,a layered material(Na_(2)[(VO)_(2)(HPO_(4))_(2)C_(2)O_(4)]·2H_(2)O,abbreviated as NVPC followingly)with open-framework structures has been successfully prepared at room temperature under ambient conditions and is evaluated as a cathode for SIBs.It is revealed that NVPC cathode can deliver a maximum reversible capacity of ca.70 mAh/g at 10 mA/g,and exhibit superior rate capability and cycling performance:at 50 mA/g,maximum reversible capacity ca.50 m Ah/g with capacity retention of 88.4%over 250 cycles corresponds to only 0.046%capacity decay per cycle;at 100 mA/g,a maximum reversible capacity of 35 mAh/g with capacity retention of60.9%over 500 cycles.This study demonstrates a practical example of a low-cost synthesis of the cathode materials for SIBs.At the same time,the systematic electrochemical research results also show promising prospects for long lifespan low-cost SIBs.展开更多
Development of block copolymer(BCP)microparticles with switchable morphology in response to external stimuli is important for exploiting new intelligent materials.In this work,thermo/p H dual-responsive nanoparticles(...Development of block copolymer(BCP)microparticles with switchable morphology in response to external stimuli is important for exploiting new intelligent materials.In this work,thermo/p H dual-responsive nanoparticles(NPs)were employed as a cosurfactant to modulate the self-assembly morphology of polystyrene-b-poly(2-vinylpyridine)(PS-b-P2VP)microparticles within confined emulsion droplets.The co-surfactant was synthesized by grafting poly(acrylic acid)-b-poly(N-isopropylacrylamide)onto the surface of Fe3O4NP.The introduction of the dual-responsive co-surfactant enabled thermo/p H dual-responsive reversible morphology transition of the PS-b-P2VP microparticles by tailoring the hydrophobicity and interfacial affinity of the cosurfactant.By using this strategy,the thermo-inert PS-b-P2VP self-assembled into pupa-like microparticles at T=10℃ and p H7.5,which could transform into tulip-like microparticles when T was increased to 50℃.When the p H value was increased to 11,the pupa-like particles turned into onion-like microparticles although the PS-b-P2VP was inert to alkali.However,the pupa-like microparticles remained unchanged when both T and p H were simultaneously increased.The PAA-b-PNIPAM-grafted Fe3O4NP surfactants showed obvious advantages over the linear PAA-b-PNIPAM surfactants in modulating the morphology transition,since the linear PAA-b-PNIPAM could not induce the reversible shape transition of microparticles.Our work provides an efficient strategy to achieve reversible shape transformation of BCP microparticles while the internal phase structure is preserved,which may be utilized to switch the structural color properties of BCP microparticles.展开更多
A kinetic model based on the classical nucleation and growth theory has been proposed to predict the precipitation behavior of complex precipitate. The method for calculating absolute solution temperature, which is an...A kinetic model based on the classical nucleation and growth theory has been proposed to predict the precipitation behavior of complex precipitate. The method for calculating absolute solution temperature, which is an important guidance for determining solution treatment temperature, is also proposed based on thermodynamic model. In the model, nucleation of the second phase is assumed to be controlled by the effective diffusion, which involves the bulk diffusion and dislocation pipe diffusion, and growth is controlled by the bulk diffusion of forming elements. The interfacial energy of complex precipitate is calculated by the linear interpolation method, and the effects of alloying elements on precipitation behavior are manifested using weighted means of their diffusivities and concentration. The predictions were compared with the experimental measurements, and a good agreement was obtained.展开更多
In this study, acrylic acid (AA) and 4-azidoaniline were used to modify poly (N-isopropylacrylamide) (NIPAAm) in order to fabricate temperature-responsive surface for corneal epithelia cell adhesion and detachme...In this study, acrylic acid (AA) and 4-azidoaniline were used to modify poly (N-isopropylacrylamide) (NIPAAm) in order to fabricate temperature-responsive surface for corneal epithelia cell adhesion and detachment. First, NIPAAm was copolymerized with acrylic acid. Then, the copolymer was coupled with azidoaniline to synthesize AzPhPIA, derivative of p(NIPAAm-co-AA), which possesses both thermo- and photo-sensitivities. Second, the synthesized copolymer was characterized by high performance liquid chromatography (HPLC), Fourier transform infrared (FTIR) and a CHN analyzer. The thermo-sensitivity was characterized by temperature reducing experiment, contact angle measurement and low critical solution temperature (LCST) testing. Third, the derivatized copolymer was immobilized by photolithography on a polystyrene plate, and then the surface characterization of AzPhPIA-coated polystyrene plate (PSt) was measured by electron spectroscopy for chemical analysis (ESCA). The thermo-sensitivity and cytocompatibility of the AzPhPIA-coated PSt were investigated by corneal epithelial cells culture. The results revealed that the AzPhPIA-coated PSt exhibited good cytocompatibility and cell detachability when temperature decreased.展开更多
In this work, 16 kinds of [FeCl4]--based magnetic ionic liquids (ILs) with different cation structures have been designed and synthesized, and their structures are characterized by IR and Raman spectroscopy. Then th...In this work, 16 kinds of [FeCl4]--based magnetic ionic liquids (ILs) with different cation structures have been designed and synthesized, and their structures are characterized by IR and Raman spectroscopy. Then the lower critical solution temperature (LCST)-type phase behavior of these magnetic ILs in water is investigated as a function of concentration. It is shown that cat- ion structure, alkyl chain length and molar ratio of FeCl3/chloride IL have a significant influence on the LCST of the mixtures. The phase separation temperature can be tuned efficiently by these factors. Meanwhile, the LCST-type phase separation pro- cess is also investigated by dynamic light scattering. The results support the mechanism that the hydrogen bonds of the [Fefl4]- anion with water have been gradually disrupted to form ILs aggregates with increasing temperature. In addition, the stability of the ILs in water is also examined in some details. These LCST-type phase separation systems may have potential applications in extraction and separation techniques at room temperature.展开更多
Thermosensitive polymers show an entropy-driven transition from a well-solvated to a poorly solvated polymer chain, resulting in a more compact globular conformation. The transition at the lower critical solution temp...Thermosensitive polymers show an entropy-driven transition from a well-solvated to a poorly solvated polymer chain, resulting in a more compact globular conformation. The transition at the lower critical solution temperature(LCST) is often sharp, which allows for a wide range of smart material applications.At the LCST, oligo(ethylene glycol)-substituted polyisocyanides(PICs) form soft hydrogels, composed of polymer bundles similar to biological gels, such as actin, fibrin and intermediate filaments. Here, we show that the LCST of PICs strongly depends linearly on the length of the ethylene glycol(EG) tails; every EG group increases the LCSTand thus the gelation temperature by nearly 30 ℃. Using a copolymerisation approach, we demonstrate that we can precisely tailor the gelation temperature between 10 ℃ and 60 ℃and, consequently, tune the mechanical properties of the PIC gels.展开更多
Neglecting the consumption of the material, a steady incompressible flow of an exothermic reacting third-grade fluid with viscous heating in a circular cylindrical pipe is numerically studied for both cases of constan...Neglecting the consumption of the material, a steady incompressible flow of an exothermic reacting third-grade fluid with viscous heating in a circular cylindrical pipe is numerically studied for both cases of constant viscosity and Reynolds' viscosity model. The coupled ordinary differential equations governing the flow in cylindrical coordinates, are transformed into dimensionless forms using appropriate transformations, and then solved numerically. Solutions using Maple are presented in tabular form and given in terms of dimensionless central fluid velocity and temperature, skin friction and heat transfer rate for three parametric values in the Reynolds' case. The numerical results for the velocity and temperature fields are also presented through graphs. Bifurcations are discussed using shooting method. Comparisons are also made between the present results and those of previous work, and thus verify the validity of the provided numerical solutions. Important properties of thermal criticality are provided for variable viscosity parameter and reaction order. Further numerical results are presented in the form of tables and graphs for transition of physical parameters, while varying certain flow and fluid material parameters. Also, the flow behaviour of the reactive fluid of third-grade is compared with those of the Newtonian reactive fluid.展开更多
基金Supported by Science and Technology Innovative Leading Fund of Ningxia Academy of Agriculture and Forestry Sciences(NKYZ-16-1101)~~
文摘Temperature, as an important feature of hydroponic nutrient solution, is closely related to dissolved oxygen content of nutrient solution and growth status of plant roots. How to precisely adjust the temperature of nutrient solution is the key to obtain high quality and high yield of hydroponic vegetables over summer. With Lactuca sativa vat. crispa 'Luosheng No.3' as the test material, the effect of chiller cooling technology on the temperature of nutrient solution, as well as on the yield and quality of Luosheng No.3, in over-summer hydroponic cultivation was studied. The results showed that the chiller cooling technology controlled the nutrient solution temperature in a reasonable range ((20 ± 1)℃) and promoted the growth and dry matter accumulation of Luosheng No.3, instead of affecting the quality. In short, the chiller cooling technology is applicable to the temperature regulation of nutrient solu- tion in hydroponics over summer.
文摘The microstructure changed markedly with increasing solution temperature, i.e eutectic γ' phases and coarse primary γ' phase are redissolved continuously into matrix, which was finished at 1250-1260℃, and more and finer γ' phases are reprecipitated. The grain boundary morphology changed gradually to 'fine line' form. The dendritic segregation of elements decreased. With raising solution temperature the longitudinal stress-rupture life at high and intermediate temperature were enhanced, but the transversal stress-rupture life at intermediate temperature decreased obviously. The incipient melting temperature of DZ22 alloy was measured to be 1230-1240℃ and may be increased by homogenization at 1150℃. In this paper the principle of determining solution temperature of DS alloys was discussed. It was suggested that the solution temperature of alloy DZ22 selected at 1200-1210℃ is appropri- ate.
文摘Objective To evaluate the effect of tumescent infiltration solution temperature on core body temperatureafter liposuction.Methods 15 healthy female subjects were randomly divided into 2 groups to receive tumescent infiltration
基金The authors would like to gratefully acknowledge the support of Industrial Strengthen Foundation Project of Ministry of Industry and Information Technology,PRC(TC150B5C0-02).
文摘Evolution laws of microstructures,mechanical properties,and fractographs after different solution temperatures were investigated through various analysis methods.With the increasing solution temperatures,contents of the primaryαphase decreased,and contents of transformedβstructures increased.Lamellarαgrains dominated the characteristics of transformedβstructures,and widths of secondaryαlamellas increased monotonously.For as-forged alloy,large silicides with equiaxed and rod-like morphologies,and nano-scale silicides were found.Silicides with large sizes might be(Ti,Zr,Nb)_(5)Si_(3) and(Ti,Zr,Nb)_(6)Si_(3).Rod-like silicides with small sizes precipitated in retainedβphase,exhibiting near 45°angles withα/βboundaries.Retainedβphases in as-heat treated alloys were incontinuous.980STA exhibited an excellent combination of room temperature(RT)and 650°C mechanical properties.Characteristics of fracture surfaces largely depended on the evolutions of microstructures.Meanwhile,silicides promoted the formation of mico-voids.
基金Funded by the Major Special Science and Technology Project of Hainan Province (No.ZDZX20100009)
文摘Phase transition behavior and influence of ions on the thermo-sensitive polyamide with polyethylene glycol as the main chain were studied in detail. By measuring the light transmission rates of polymer solutions, the change of its lower critical solution temperature (LCST) in the salt solution was investigated. It was found that a reversible phase transition of the polyamide occurred at the LCST and finished in a narrow temperature range. The LCST was associated with species of ions in salt solution. Anions had a great impact on the phase transition performance of the thermo-sensitive polyamide, while the cations had a slight influence on the phase transition. Different anions had different coagulation ability to ‘salt-out' the polyamide. The order was: CO2-3〉SiO2-3〉HPO2-4〉OH-〉Cl-〉HCO3-〉HSOa-〉NO2-〉NO3-.
基金Project Supported by Science Foundation of Shanghai MunicipalCommission of Science and Technology (Grant No .02DJ14030)
文摘The thermosensitive poly ( N-isopropylacrylamide ) (PNIPAAm) and poly (N-isopropylacrylamide-co-acrylamide) [ poly (NIPAAm-co-AAm) ] hydrogels with different acrylamide molar percentage are prepared by radiation polymerization using Co^60 γ-ray. Their swelling equilibrium data in the media of deionized water, NaCl aqueous solutions and different pH buffer solutions are determined. It appears that lower critical solution temperature (LCST) of the hydrogels will drop with the increase of ionic strength and increase with the rising of acrylamide content, A semi-empirical formula is set up with the experimental results. Moreover, it also indicates that this copolymer is pH-sensitive, which is similar to the homopolymer of PNIPAAm.
文摘Metal-organic frameworks are compounds with a reticulated skeletal structure formed by chemically bonding inorganic and organic units that are widely used in many fields, such as photocatalysis, gas separation and energy storage, because of their unique structures. In this paper, we prepared a metal-organic framework [(<em>μ</em><sub>2</sub>-2-methylimidazolyl)<sub>12</sub>-Zn(ii)<sub>6</sub>-H<sub>18</sub>O<sub>10</sub>]<sub>n</sub>(ZM) with well-developed pores and high specific surface area of MOFs by the solution method. And MOF-derived porous carbon was prepared by the direct charring method in an argon atmosphere using a mixture of ZM, ZM and potassium citrate as carbon precursors. Characterization analysis revealed that the maximum specific surface area of ZMPC-800-1:15 was 2014.97 m<sup>2</sup><span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, and the pore size structure was mainly mesoporous. At a current density of 1.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> the specific capacitance of ZMC-800 and ZMPC-800-1:15 was 121.3 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> and 226.6 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, respectively, with a substantial increase of 86.8%. The specific capacitance of ZMPC-800-1:15 decays to 168.8 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, with a decay rate of 25.5%, when the current density increases to 10.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>. After 5000 constant current charge/ discharge cycles, the capacitance retention rate was still 96.41%. These results prove that the application of MOF-derived carbon materials in future supercapacitors is very promising.
基金supported by the National Natural Science Foundation of China(21704026,21788102,51620105009,21877040,U1801252,21602063,22075087)the Natural Science Foundation of Guangdong Province,China(2019A1515011129)+4 种基金the Science and Technology Program of Guangzhou(201804020060,202007020002,201704030069,202002030229)Pearl River S&T Nova Program of Guangzhou(201806010152)Fundamental Research Funds for the Central Universities(2018JQ01)Foundation for Xinghua Scholar of South China University of TechnologyNational Key R&D Program of China(2017YFC1103400,2017YFC1105004,2018YFC0311103)。
文摘The stimuli-responsive polymers with upper critical solution temperatures(UCST) are highly attractive for drug delivery applications. However, the phase transition process of UCST polymer is usually characterized by turbidity measurement and electron microscopy, which are significantly restricted by low sensitivity and static observation. In contrary, the fluorescence technique has significant advantages in terms of high sensitivity, easy operation, and dynamic observation. However, the conventional fluorophores suffer from the drawbacks of aggregation-caused quenching(ACQ) after being encapsulated by UCST polymers, which are not suitable for direct visualization of the phase transition process. To tackle this challenge, we herein developed a series of UCST polymers based on polyacrylamides decorated with bile acid and aggregation-induced emission(AIE)-active tetraphenylethene(TPE) groups, which can be used for direct fluorescence monitoring of the phase transition process. Moreover, the AIE-active UCST polymers can serve as drug carriers, which can not only monitor the drug release process under thermal stimuli, but also verify the drug release by fluorescence recovery after thermal stimuli. It is expected that the AIE-active UCST polymers with self-monitoring ability are promising for biomedical applications.
基金the financial support of the National Key Research and Development Program of China(Grant No.2017YFB0305101)
文摘The secondary phases of the steels have significant effects on the microstructure and mechanical properties, making controlling these secondary phases important. The control of MnS inclusions and A1N precipitates in a N-alloyed high-Mn twin-induced plastic cryogenic steel via solution treatment was investigated with several different techniques including microstructural characterization, 298 K tensile testing, and 77 K impact testing. The solutionizing temperature (ST) increased from 1323 to 1573 K, where the elongated MnS inclusions and large-sized AlN precipitates became spheroidized and dissolved. The aspect ratio of the MnS inclusions decreased as the ST increased and the number density increased. The impact toughness of the steels showed anisotropy and low impact energy values, due to the elongated MnS inclusions and large-sized AIN precipitates. The anisotropy was eliminated by spheroidizing the MnS inclusions. The impact energy was improved by dissolving the large-sized AlN precipitates during the solution treatment. The austenite grain size increased when the dissolution of the AlN precipitate increased, but the effect of the grain size on the yield strength, toughness, and the strength--ductility balance was weak.
基金financially supported by the Natural Science Foundation of Zhejiang Province(No.LY20E030005)the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices(No.PMND201905)。
文摘Near-infrared light(NIR)triggered transdermal drug delivery systems are of great interest due to their on-demand drug release,which enable to enhance drug treatment efficiency as well as reduce side effect.Herein,a NIR-triggered microneedle(MN)patch array has been fabricated through depositing the photothermal conversion agent and anti-diabetic drug-loaded polymer vesicles with upper critical solution temperature(UCST)into dissolvable polymer matrix.The UCST-type polymer has a clearing point temperature of 41℃ and the drug-loaded polymer vesicles present excellent NIR-triggered and temperature responsive drug release behavior in vitro due to the disassociation of polymer vesicles upon NIR irradiation.After applying MNs to diabetic rats,significant hypoglycemic effect is achieved upon interval NIR irradiation and the blood glucose concentration can decrease to normal state for several hours,which enables to achieve the goal of on-demand drug release.This work suggests that the NIR-triggered MN drug release device has a potential application in the treatment of diabetes,especially for those requiring an active drug release manner.
基金supported by the National Key Research and Development Program of China(2023YFC3806300)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1485)
文摘Thermoresponsive hydrogels have been designed for smart windows to dynamically modulate solar radiation,but their inherent drawbacks of long response time and imperfectly matched phase transition temperature have limited their wide applications.This work reports a novel composite hydrogel consisting of hydroxypropyl cellulose,polyacrylic acid,and carbon quantum dots with intriguing features of tunable transition temperature and enhanced switching speed.The composite hydrogel demonstrated flexible tunability in transition temperature by controlling the hydrogen ion concentration and a fast response speed by dopping with carbon dots for efficient photothermal conversion.The building energy simulation was carried out to investigate the impacts of transition temperature variations and solar regulations on the space cooling/heating loads under different climate conditions,revealing the necessity of tunability of both transition temperature and solar transmittance in thermochromic smart windows.This novel design of thermochromic composite hydrogel provides insight into theoretical and experimental support for future adaptive building envelopes.
基金National Natural Science Foundation of China,Grant/Award Number:21801203HuxiangYoung Talent Program fromHunan Province,Grant/Award Number:2018RS3036。
文摘Lower critical solution temperature(LCST)is the critical temperature below which the solution is miscible for all compositions and above which the solution becomes a suspension.The study of LCST properties has become a central research topic due to its profound impact on the applications of stimuli-responsive materials.Inspired by the marriage between materials science and supramolecular chemistry,the introduction of supramolecular pairs and interactions into polymeric LCST systems is increasingly practiced.Especially,supramolecular interactions provide precise control over LCST behavior in both water and organic solvents.Furthermore,supramolecular interactions not only control or adjust LCST behavior(supramolecular interaction controlled LCST),but also induce LCST phase behavior in species lack of thermo-sensitive properties(supramolecular interaction induced LCST).In this review,we summarize the applications of supramolecular interactions in LCST systems.By examining the relationship between supramolecular interactions and LCST changes,we further discuss the differences between supramolecular interaction controlled LCST and supramolecular interaction induced LCST.We hope this review will give our readers a snapshot on how the supramolecular interactions influence the LCST behavior in various systems,and benefit them with different applications.
基金supported by the Young Investigator Award received by Yan in 2006the Foundation for the Visiting PhD Candidate of the Chinese Academy of Science received by Liu in 2006
文摘Circular double stranded DNA has different topological states which are defined by their linking numbers. Equilibrium distribution of linking numbers can be obtained by closing
基金financially supported by the National Natural Science Foundation of China(No.21805278)。
文摘The synthesis of active electrode materials at room temperature is one of the effective strategies to reduce the fabrication cost of sodium ion batteries(SIBs).Herein,a layered material(Na_(2)[(VO)_(2)(HPO_(4))_(2)C_(2)O_(4)]·2H_(2)O,abbreviated as NVPC followingly)with open-framework structures has been successfully prepared at room temperature under ambient conditions and is evaluated as a cathode for SIBs.It is revealed that NVPC cathode can deliver a maximum reversible capacity of ca.70 mAh/g at 10 mA/g,and exhibit superior rate capability and cycling performance:at 50 mA/g,maximum reversible capacity ca.50 m Ah/g with capacity retention of 88.4%over 250 cycles corresponds to only 0.046%capacity decay per cycle;at 100 mA/g,a maximum reversible capacity of 35 mAh/g with capacity retention of60.9%over 500 cycles.This study demonstrates a practical example of a low-cost synthesis of the cathode materials for SIBs.At the same time,the systematic electrochemical research results also show promising prospects for long lifespan low-cost SIBs.
基金supported by the National Natural Science Foundation of China (52222304,52293474,51933005,51903098)the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry (2021–13)+1 种基金Changchun Institute of Applied Chemistry,Chinese Academy of Sciencesthe Analytical&Testing Center (HUST)and the Research Core Facilities of Life Science (HUST)for their support on TEM,H NMR,and FT-IR。
文摘Development of block copolymer(BCP)microparticles with switchable morphology in response to external stimuli is important for exploiting new intelligent materials.In this work,thermo/p H dual-responsive nanoparticles(NPs)were employed as a cosurfactant to modulate the self-assembly morphology of polystyrene-b-poly(2-vinylpyridine)(PS-b-P2VP)microparticles within confined emulsion droplets.The co-surfactant was synthesized by grafting poly(acrylic acid)-b-poly(N-isopropylacrylamide)onto the surface of Fe3O4NP.The introduction of the dual-responsive co-surfactant enabled thermo/p H dual-responsive reversible morphology transition of the PS-b-P2VP microparticles by tailoring the hydrophobicity and interfacial affinity of the cosurfactant.By using this strategy,the thermo-inert PS-b-P2VP self-assembled into pupa-like microparticles at T=10℃ and p H7.5,which could transform into tulip-like microparticles when T was increased to 50℃.When the p H value was increased to 11,the pupa-like particles turned into onion-like microparticles although the PS-b-P2VP was inert to alkali.However,the pupa-like microparticles remained unchanged when both T and p H were simultaneously increased.The PAA-b-PNIPAM-grafted Fe3O4NP surfactants showed obvious advantages over the linear PAA-b-PNIPAM surfactants in modulating the morphology transition,since the linear PAA-b-PNIPAM could not induce the reversible shape transition of microparticles.Our work provides an efficient strategy to achieve reversible shape transformation of BCP microparticles while the internal phase structure is preserved,which may be utilized to switch the structural color properties of BCP microparticles.
基金This work was financially supported by the National Natural Science Foundation of China (51234002).
文摘A kinetic model based on the classical nucleation and growth theory has been proposed to predict the precipitation behavior of complex precipitate. The method for calculating absolute solution temperature, which is an important guidance for determining solution treatment temperature, is also proposed based on thermodynamic model. In the model, nucleation of the second phase is assumed to be controlled by the effective diffusion, which involves the bulk diffusion and dislocation pipe diffusion, and growth is controlled by the bulk diffusion of forming elements. The interfacial energy of complex precipitate is calculated by the linear interpolation method, and the effects of alloying elements on precipitation behavior are manifested using weighted means of their diffusivities and concentration. The predictions were compared with the experimental measurements, and a good agreement was obtained.
基金supported by the National Natural Science Foundation of China (Nos.30970731 and 50832002)the Natural Science Foundation of Guangdong Province(No.9151063101000015)
文摘In this study, acrylic acid (AA) and 4-azidoaniline were used to modify poly (N-isopropylacrylamide) (NIPAAm) in order to fabricate temperature-responsive surface for corneal epithelia cell adhesion and detachment. First, NIPAAm was copolymerized with acrylic acid. Then, the copolymer was coupled with azidoaniline to synthesize AzPhPIA, derivative of p(NIPAAm-co-AA), which possesses both thermo- and photo-sensitivities. Second, the synthesized copolymer was characterized by high performance liquid chromatography (HPLC), Fourier transform infrared (FTIR) and a CHN analyzer. The thermo-sensitivity was characterized by temperature reducing experiment, contact angle measurement and low critical solution temperature (LCST) testing. Third, the derivatized copolymer was immobilized by photolithography on a polystyrene plate, and then the surface characterization of AzPhPIA-coated polystyrene plate (PSt) was measured by electron spectroscopy for chemical analysis (ESCA). The thermo-sensitivity and cytocompatibility of the AzPhPIA-coated PSt were investigated by corneal epithelial cells culture. The results revealed that the AzPhPIA-coated PSt exhibited good cytocompatibility and cell detachability when temperature decreased.
基金supported by the National Natural Science Foundation of China (21473050, 21403060)Program for Innovative Research Team in Science and Technology in University of Henan Province (16IRTSTHN002)+1 种基金Plan for Scientific Innovation Talent of Henan Province of China (144200510004)the Natural Science Research Program of Henan Educational Committee (2010A150014)
文摘In this work, 16 kinds of [FeCl4]--based magnetic ionic liquids (ILs) with different cation structures have been designed and synthesized, and their structures are characterized by IR and Raman spectroscopy. Then the lower critical solution temperature (LCST)-type phase behavior of these magnetic ILs in water is investigated as a function of concentration. It is shown that cat- ion structure, alkyl chain length and molar ratio of FeCl3/chloride IL have a significant influence on the LCST of the mixtures. The phase separation temperature can be tuned efficiently by these factors. Meanwhile, the LCST-type phase separation pro- cess is also investigated by dynamic light scattering. The results support the mechanism that the hydrogen bonds of the [Fefl4]- anion with water have been gradually disrupted to form ILs aggregates with increasing temperature. In addition, the stability of the ILs in water is also examined in some details. These LCST-type phase separation systems may have potential applications in extraction and separation techniques at room temperature.
基金the Netherlands Organisation for Scientific Research (NWO)for providing and supporting beam time at the DutchBelgium beamline(DUBBLE) for SAXS experiments(No. BM26-02773)financial support from NWO (VENI grant No. 680-47-437)+2 种基金the Euopean Union's 2020 ResearchInnovation Programme under Grant Agreement No. 642687project Biogel
文摘Thermosensitive polymers show an entropy-driven transition from a well-solvated to a poorly solvated polymer chain, resulting in a more compact globular conformation. The transition at the lower critical solution temperature(LCST) is often sharp, which allows for a wide range of smart material applications.At the LCST, oligo(ethylene glycol)-substituted polyisocyanides(PICs) form soft hydrogels, composed of polymer bundles similar to biological gels, such as actin, fibrin and intermediate filaments. Here, we show that the LCST of PICs strongly depends linearly on the length of the ethylene glycol(EG) tails; every EG group increases the LCSTand thus the gelation temperature by nearly 30 ℃. Using a copolymerisation approach, we demonstrate that we can precisely tailor the gelation temperature between 10 ℃ and 60 ℃and, consequently, tune the mechanical properties of the PIC gels.
基金supported by Pastor E. A. Adeboye endowed Professorial Chair and conducted at the Department of Mathematics, University of Lagos, Lagos, Nigeria while on leave from
文摘Neglecting the consumption of the material, a steady incompressible flow of an exothermic reacting third-grade fluid with viscous heating in a circular cylindrical pipe is numerically studied for both cases of constant viscosity and Reynolds' viscosity model. The coupled ordinary differential equations governing the flow in cylindrical coordinates, are transformed into dimensionless forms using appropriate transformations, and then solved numerically. Solutions using Maple are presented in tabular form and given in terms of dimensionless central fluid velocity and temperature, skin friction and heat transfer rate for three parametric values in the Reynolds' case. The numerical results for the velocity and temperature fields are also presented through graphs. Bifurcations are discussed using shooting method. Comparisons are also made between the present results and those of previous work, and thus verify the validity of the provided numerical solutions. Important properties of thermal criticality are provided for variable viscosity parameter and reaction order. Further numerical results are presented in the form of tables and graphs for transition of physical parameters, while varying certain flow and fluid material parameters. Also, the flow behaviour of the reactive fluid of third-grade is compared with those of the Newtonian reactive fluid.