期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Enhanced performance of solution-processed carbon nanotube transparent electrodes in foldable perovskite solar cells through vertical separation of binders by using eco-friendly parylene substrate
1
作者 Unsoo Kim Jeong-Seok Nam +3 位作者 Jungjin Yoon Jiye Han Mansoo Choi Il Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期83-93,共11页
The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrat... The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules. 展开更多
关键词 double-walled carbon nanotubes parylene substrates perovskite modules perovskite solar cells solution-processable electrodes surfactant removal
下载PDF
Suppressing the Undesirable Energy Loss in Solution-Processed Hyperfluorescent OLEDs Employing BODIPY-Based Hybridized Local and Charge-Transfer Emitter
2
作者 Xuewei Nie Zafar Mahmood +7 位作者 Denghui Liu Mengke Li Dehua Hu Wencheng Chen Longjiang Xing Shijian Su Yanping Huo Shaomin Ji 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期372-380,共9页
Hyperfluorescent organic light-emitting diodes(HF-OLEDs)approach has made it possible to achieve excellent device performance and color purity with low roll-off using noble-metal-free pure organic emitter.Despite sign... Hyperfluorescent organic light-emitting diodes(HF-OLEDs)approach has made it possible to achieve excellent device performance and color purity with low roll-off using noble-metal-free pure organic emitter.Despite significant progress,the performance of HF-OLEDs is still unsatisfactory due to the existence of a competitive dexter energy transfer(DET)pathway.In this contribution,two boron dipyrromethene(BODIPY)-based donor-acceptor emitters(BDP-C-Cz and BDP-N-Cz)with hybridized local and charge transfer characteristics(HLCT)are introduced in the HF-OLED to suppress the exciton loss by dexter mechanism,and a breakthrough performance with low-efficiency roll-off(0.3%)even at high brightness(1000 cd m^(-2))is achieved.It is demonstrated that the energy loss via the DET channel can be suppressed in HF-OLEDs utilizing the HLCT emitter,as the excitons from the dark triplet state of such emitters are funneled to its emissive singlet state following the hot-exciton mechanism.The developed HF-OLED device has realized a good maximum external quantum efficiency(EQE)of 19.25%at brightness of 1000 cd m^(-2)and maximum luminance over 60000 cd m^(-2),with an emission peak at 602 nm and Commission International de L'Eclairage(CIE)coordinates(0.57,0.41),which is among the best-achieved results in solution-processed HF-OLEDs.This work presents a viable methodology to suppress energy loss and achieve high performance in the HF-OLEDs. 展开更多
关键词 BODIPY hyperfluorescence organic light-emitting diodes solution-process
下载PDF
Inorganic and Organic Solution-Processed Thin Film Devices 被引量:6
3
作者 Morteza Eslamian 《Nano-Micro Letters》 SCIE EI CAS 2017年第1期16-38,共23页
Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materia... Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution. 展开更多
关键词 Organic electronics Photovoltaics Thin film transistors Thermoelectric devices Organic light-emitting diodes Smart materials Sensors and actuators solution-processed methods
下载PDF
GO-induced effective interconnection layer for all solution-processed tandem quantum dot light-emitting diodes
4
作者 JIANG Hao-hong SU Hang +1 位作者 CHEN Li-xiang TAN Xing-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3737-3746,共10页
Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state ligh... Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state lighting in the future.The TQLED is a multilayer structure device which connects two or more light-emitting units by using an interconnection layer(ICL),which plays an extremely important role in the TQLED.Therefore,realizing an effective ICL is the key to obtain high-efficiency TQLEDs.In this work,the p-type materials polys(3,4-ethylenedioxythiophene),poly(styrenesulfonate)(PEDOT:PSS)and the n-type material zinc magnesium oxide(ZnMgO),were used,and an effective hybrid ICL,the PEDOT:PSS-GO/ZnMgO,was obtained by doping graphene oxide(GO)into PEDOT:PSS.The effect of GO additive on the ICL was systematically investigated.It exhibits that the GO additive brought the fine charge carrier generation and injection capacity simultaneously.Thus,the all solutionprocessed red TQLEDs were prepared and characterized for the first time.The maximum luminance of 40877 cd/m^(2) and the highest current efficiency of 19.6 cd/A were achieved,respectively,showing a 21%growth and a 51%increase when compared with those of the reference device without GO.The encouraging results suggest that our investigation paves the way for efficient all solution-processed TQLEDs. 展开更多
关键词 tandem quantum dot light-emitting diodes all solution-processed interconnection layer graphene oxide current efficiency
下载PDF
Construction of a cement-rebar nanoarchitecture for a solution-processed and flexible film of a Bi_(2)Te_(3)/CNT hybrid toward low thermal conductivity and high thermoelectric performance
5
作者 Zhijun Chen Haicai Lv +2 位作者 Qichun Zhang Hanfu Wang Guangming Chen 《Carbon Energy》 SCIE CAS 2022年第1期115-128,共14页
Solution processability and flexibility still remain major challenges for many thermoelectric(TE)materials,including bismuth telluride(Bi_(2)Te_(3)),a typical and commercially available TE material.Here,we report a ne... Solution processability and flexibility still remain major challenges for many thermoelectric(TE)materials,including bismuth telluride(Bi_(2)Te_(3)),a typical and commercially available TE material.Here,we report a new solutionprocessed method to prepare a flexible film of a Bi_(2)Te_(3)/single-walled carbon nanotube(SWCNT)hybrid,where the dissolved Bi_(2)Te_(3) ion precursors are mixed with dispersed SWCNTs in solution and recrystallized on the SWCNT surfaces to form a“cement-rebar”-like architecture.The hybrid film shows an n-type characteristic,with a stable Seebeck coefficient of^(−1)00.00±1.69μVK^(−1) in air.Furthermore,an extremely low in-plane thermal conductivity of∼0.33Wm^(−1) K^(−1) is achieved at 300 K,and the figure of merit(ZT)reaches 0.47±0.02.In addition,the TE performance is independent of mechanical bending.The unique“cement-rebar”-like architecture is believed to be responsible for the excellent TE performances and the high flexibility.The results provide a new avenue for the fabrication of solution-processable and flexible TE hybrid films and will speed up the applications of flexible electronics and energy conversion. 展开更多
关键词 Bi_(2)Te_(3) carbon nanotube HYBRID solution-processed THERMOELECTRICS
下载PDF
Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors
6
作者 项兰义 应俊 +2 位作者 韩金花 王伟 谢文法 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期167-170,共4页
Polymer field-effect transistors operated in the n-channel model with a top-gate/bottom-contact are processed using a solution method. The transistor performance depends on the gate dielectric layer. A high performanc... Polymer field-effect transistors operated in the n-channel model with a top-gate/bottom-contact are processed using a solution method. The transistor performance depends on the gate dielectric layer. A high performance polymer transistor is achieved, with the saturated electron mobility of about 0.46cm2/Vs, threshold voltage nearly 0 V and subthreshold sway of about 0.9 V/decade, employing a polystyrene (PS) dielectric layer. The transistor performances are further improved with increasing current and lower operation voltages by utilizing a bi-layer gate dielectric, comprising a thin PS dielectric layer adjacent to the semiconductor to minimize the density of the interface traps for obtaining a small VT, a large μ and a poly(methyl methacrylate) (PMMA) dielectric layer with a relatively high-k adjacent to the gate electrode for enlarging the capacitance, processed from the orthogonal solvents. 展开更多
关键词 solution-processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors PS
下载PDF
Recent Progress in All-Solution-Processed Organic Solar Cells
7
作者 Yixuan Xu Qian Wang +5 位作者 Wentao Zou Xu Zhang Yanna Sun Yuanyuan Kan Ping Cai Ke Gao 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第2期190-198,共9页
All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly effici... All-solution-processed organic solar cells(OSCs)(from the bottom electrode to the top electrode)are highly attractive thanks to their low cost,lightweight and high-throughput production.However,achieving highly efficient all-solution-processed OSCs remains a significant challenge.One of the key issues is the lack of high-quality solution-processed electrode systems that can replace indium tin oxide(ITO)and vacuum-deposited metal electrodes.In this paper,we comprehensively review recent advances in all-solution-processed osCs,and classified the devices as the top electrode materials,including silver nanowires(AgNWs),conducting polymers and composite conducting materials.The correlation between electrode materials,properties of electrodes,and device performance in all-solution-processed OSCs is elucidated.In addition,the critical roles of the active layer and interface layer are also discussed.Finally,the prospects and challenges of all-solution-processed OSCs are presented. 展开更多
关键词 Organic solar cells All-solution-processed organic solar cells solution-processed electrodes High performance Silver nanowires Conductive polymers Composite conducting materials
原文传递
Thermally cross-linkable hole-transport materials enable solution-processed blue OLED with LT95 over 150 h
8
作者 Xinkang Zhang Hao Yan +1 位作者 Xiaopeng Zhang Hong Meng 《Science China Materials》 SCIE EI CAS CSCD 2024年第9期2767-2777,共11页
The solution-processed method for organic light-emitting diodes(OLEDs)offers the benefits of cost-effectiveness and enhanced material utilization.In the multilayer architecture of solution-processed OLEDs(SOLEDs),the ... The solution-processed method for organic light-emitting diodes(OLEDs)offers the benefits of cost-effectiveness and enhanced material utilization.In the multilayer architecture of solution-processed OLEDs(SOLEDs),the role of hole-transport materials(HTMs)is pivotal for cascade hole injection.However,commercial HTMs such as poly-(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine)(TFB)are hampered by incompatible energy levels and redissolution with overlayer solvent,prompting the exploration of cross-linkable HTMs(X-HTMs)for better performance.In this study,we have developed two novel small-molecule X-HTMs,N^(1),N^(1)′-((perfluoropropane-2,2-diyl)bis(4,1-phenylene))bis(N^(4),N^(4)-diphenyl-N^(1)-(4-vinylphenyl)benzene-1,4-diamine)(FTPA-V)and N,N′-((perfluoropropane-2,2-diyl)bis-(4,1-phenylene))bis(9-phenyl-N-(4-vinylphenyl)-9H-carbazol-3-amine)(FPCz-V),which incorporate thermally cross-linkable vinyl groups and electron-rich trifluoromethyl units.The X-HTMs enhance interfacial contact through superior film formation and solvent resistance,along with optimal energy levels.The application of X-HTMs significantly enhances the efficiencies and longevities of blue,green,and red SOLEDs.Specially,blue SOLED incorporating FPCz-V exhibits unprecedented lifetime(LT95)extending to over 150 h,setting a new record for blue SOLEDs.The electrochemistry stability,high bond dissociation energy,and triplet energy levels of X-HTMs can effectively minimize exciton annihilation and prolong the lifetime.These findings underscore the potential of X-HTM optimization to propel the development of stable solution-processed luminescent technologies. 展开更多
关键词 solution-processed OLED cross-linkable HTMs solvent resistance bond dissociation energy exciton-polaron annihilation
原文传递
Rational molecular design of efficient yellow-red dendrimer TADF for solution-processed OLEDs: a combined effect of substitution position and strength of the donors
9
作者 Changfeng Si Dianming Sun +3 位作者 Tomas Matulaitis David B.Cordes Alexandra M.Z.Slawin Eli Zysman-Colman 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第5期1613-1623,共11页
The development of high-performance solution-processed red organic light-emitting diodes(OLEDs) remains a challenge,particularly in terms of maintaining efficiency at high luminance. Here, we designed and synthesized ... The development of high-performance solution-processed red organic light-emitting diodes(OLEDs) remains a challenge,particularly in terms of maintaining efficiency at high luminance. Here, we designed and synthesized four novel orange-red thermally activated delayed fluorescence(TADF) dendrimers that are solution-processable: 2GCz BP, 2DPACz BP, 2FBP2GCz and 2FBP2DPACz. We systematically investigated the effect of substitution position and strength of donors on the optoelectronic properties. The reverse intersystem crossing rate constant(kRISC) of the emitters having donors substituted at positions 11and 12 of the dibenzo[a,c]phenazine(BP) is more than 10-times faster than that of compounds substituted having donors substituted at positions 3 and 6. Compound 2DPACz BP, containing stronger donors than 2GCz BP, exhibits a red-shifted emission and smaller singlet-triplet energy splitting, ΔE_(ST), of 0.01 e V. The solution-processed OLED with 10 wt% 2DPACz BP doped in m CP emitted at 640 nm and showed a maximum external quantum efficiency(EQE_(max)) of 7.8%, which was effectively maintained out to a luminance of 1,000 cd m-2. Such a device's performance at relevant display luminance is among the highest for solution-processed red TADF OLEDs. The efficiency of the devices was improved significantly by using 4Cz IPN as an assistant dopant in a hyperfluorescence(HF) configuration, where the 2DPACz BP HF device shows an EQEmaxof 20.0% at λEL of 605 nm and remains high at 11.8% at a luminance of 1,000 cd m-2, which makes this device one of the highest efficiency orange-to-red HF SP-OLEDs to date. 展开更多
关键词 thermally activated delayed fluorescence solution-processing red OLEDs dibenzo[a c]phenazine DENDRIMERS
原文传递
Non-conjugated Polynorbornene Hosts with High Triplet Energy Levels for Solution-processed Narrowband Blue OLEDs 被引量:1
10
作者 LI Qiang CHEN Liang +3 位作者 WANG Xingdong WANG Shumeng SHAO Shiyang WANG Lixiang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2023年第5期763-771,共9页
Three polymer hosts(namely PNB-tBuCz,PNB-Ac,PNB-TAc)containing non-conjugated polynorbornene(PNB)backbone and hole-transporting arylamine segments(carbazole,acridan and dendritic teracridan)in side chains are develope... Three polymer hosts(namely PNB-tBuCz,PNB-Ac,PNB-TAc)containing non-conjugated polynorbornene(PNB)backbone and hole-transporting arylamine segments(carbazole,acridan and dendritic teracridan)in side chains are developed for solution-processed narrowband blue organic light-emitting diodes(OLEDs).It is found that the non-conjugated polynorbornenes can keep high triplet energy(ET)levels in range of 3.12-3.20 eV by interrupting the conjugation of repeating units,making them capable as host materials for blue emitters.Meanwhile,by increasing the electron-donating capability of side chain arylamine from carbazole to acridan and dendritic teracridan,the highest occupied molecular orbital(HOMO)levels for the polymer hosts are elevated from-5.50 eV to-5.11 eV,beneficial for reducing the hole injection barrier from anode to emissive layer.As a result,solution-processed OLEDs employing polynorbornenes with dendritic teracridan side chain(PNB-TAc)as host and boron,selenium,nitrogen-containing multiple resonance thermally activated delayed fluorescence emitter as dopant reveal efficient narrowband blue electroluminescence with emission peak at 474 nm,full-width at half maximum of 30 nm,together with maximum external quantum efficiency of 20.2%,representing the state-of-the-art device efficiency for solution-processed OLEDs with narrowband blue emission. 展开更多
关键词 Polymer host POLYNORBORNENE Organic light-emitting diode solution-processed NARROWBAND Blue emission
原文传递
Phosphonium-Based Ionic Thermally Activated Delayed Fluorescence Emitters for High-Performance Partially Solution-Processed Organic Light-Emitting Diodes 被引量:1
11
作者 Xu-Lin Chen Xiao-Dong Tao +5 位作者 Ya-Shu Wang Zhuangzhuang Wei Lingyi Meng Dong-Hai Zhang Fu-Lin Lin Can-Zhong Lu 《CCS Chemistry》 CAS CSCD 2023年第3期589-597,共9页
Ionic thermally activated delayed fluorescence(TADF)emitters are rarely investigated due to their poor photoluminescence and electroluminescence performance.Herein,highly efficient ionic TADF emitters with charged do... Ionic thermally activated delayed fluorescence(TADF)emitters are rarely investigated due to their poor photoluminescence and electroluminescence performance.Herein,highly efficient ionic TADF emitters with charged donor–acceptor(D–A^(+))and D–A^(+)–D architectures are designed,innovatively based on the phosphonium cation electron acceptor.The symmetric D–A^(+)–D compound in doped film exhibits a high photoluminescence quantum yield of 0.91 and a short emission lifetime of 1.43 microseconds.Partially solution-processed organic lightemitting diodes based on these ionic TADF emitters achieve a maximum external quantum efficiency(EQE)of 18.3%and a peak luminance of 14,532 candelas per square meter(cd/m^(2))and show a small efficiency roll-off of 7.1%(EQE=17%)at a practical high luminance of 1000 cd/m^(2).These results demonstrate the high potential of phosphonium cations as promising electron acceptors to construct TADF emitters for high-performance electroluminescence devices.The current study opens up an appealing way for future exploitation of high-efficiency ionic TADF materials. 展开更多
关键词 cation acceptor charge transfer PHOSPHONIUM ionic emitter thermally activated delayed fluorescence partially solution-processed host-guest organic light-emitting diode efficiency roll-off
原文传递
Constructing an efficient deep-blue TADF emitter by host-guest interactions towards solution-processed OLEDs with narrowband emission
12
作者 Yanchao Xie Lei Hua +5 位作者 Zhi Wang Yuerong Liu Shian Ying Yuchao Liu Zhongjie Ren Shouke Yan 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第3期826-836,共11页
High-efficiency thermally activated delayed fluorescence(TADF) emitters and corresponding well-designed solution-processed organic light emitting diodes(OLEDs) are presently attractive due to their potential for explo... High-efficiency thermally activated delayed fluorescence(TADF) emitters and corresponding well-designed solution-processed organic light emitting diodes(OLEDs) are presently attractive due to their potential for exploiting large-area flexible displays. In this context, we innovatively integrate 2,12-di-tert-butyl-5,9-dioxa-13b-boronaphtho [3,2,1] anthracene as the acceptor with 3,6-bis(3,6-di-tert-butylcarbazol-N-yl) carbazole as the donor to construct a rigid deep-blue emitter, TB-3t BuCz, which exhibits a narrow emission with full-width-at-half-maximum(FWHM) of 46 nm. TB-3t BuCz itself dispalys no TADF characteristics both in solution or in pure film states. However, the significant TADF behavior can be observed when TB-3t BuCz is doped with 2,6-DCzPPy host due to the formation of exciplex-like species in 2,6-DCzPPy/TB-3t BuCz system. It is also found that the discernible spin-flip of triplet excitons is feasible when the S1/T1states of the formed exciplex stay slightly lower than S1 and T1states of TB-3t BuCz for the other host/TB-3t BuCz systems. Eventually, thanks to the synergetic effect of rigid structure and favorable photophysical properties of TB-3t BuCz, the solution-processed OLEDs based on 2,6-DCzPPy/TB-3t BuCz as emitting layer has achieved the significantly improved external quantum efficiency(EQE) of 14.6% with suppressed efficiency roll-off.The CIE1931 coordinate of(0.158, 0.052) is typically in deep-blue region. Note that, this EQE value is among the highest echelon of solution-processed OLEDs with deep-blue emission by utilizing boron-containing TADF emitters. 展开更多
关键词 thermally activated delayed fluorescence oxygen-bridged cyclized boron host-guest interactions solution-processed OLEDs narrowband deep-blue emission
原文传递
Solution-processed n-type Bi_2Te_(3-x)Se_x nanocomposites with enhanced thermoelectric performance via liquid-phase sintering 被引量:2
13
作者 Chaohua Zhang Chunxiao Zhang +1 位作者 Hongkuan Ng Qihua Xiong 《Science China Materials》 SCIE EI CSCD 2019年第3期389-398,共10页
The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Her... The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Here, a facile bottom-up solution-synthesis with spark plasma sintering(SPS) process has been developed to build n-type Bi2Te3-xSex bulk nanocomposites, which substantially improves the power factor and decreases the lattice thermal conductivity by tuning the interface scattering of phonons and electrons. The stoichiometric composition in ternary Bi2Te3-xSex nanocomposites is also tuned to optimize the carrier concentration and lattice thermal conductivity. The optimized bulk nanocomposite Bi2Te2.7Se0.3 exhibits a ZT of 1.1 at^371 K, which is comparable to the corresponding commercially available ingots. Our results demonstrate the great potential of the solution-processed n-type Bi2Te3-xSex nanocomposites for cost-effective thermoelectric applications. 展开更多
关键词 thermoelectric LIQUID-PHASE sintering NANOCOMPOSITES solution-processed bismuth TELLURIDE
原文传递
Solution-processed multi-resonance organic light-emitting diodes with high efficiency and narrowband emission 被引量:2
14
作者 Shen Xu Qingqing Yang +7 位作者 Ying Zhang Hui Li Qin Xue Guohua Xie Minzhao Gu Jibiao Jin Ling Huang Runfeng Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第4期1372-1376,共5页
With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emittin... With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emitting diodes(OLEDs)owing to their thermally activated delayed fluorescence(TADF)nature.However,the highly rigid molecular skeleton with the oppositely positioned bo ron and nitrogen in generating MR effects results in the intrinsic difficulties in the solution-processing of MR-OLEDs.Here,we demonstrate a facile strategy to increase the solubility,enhance the efficiencies and modulate emission color of MR-TADF molecules by extending aromatic rings and introducing tert-butyls into the MR backbone.Two MR-TADF emitters with smaller singlet-triplet splitting energies(ΔE~(ST))and larger oscillator strengths were prepared conveniently,and the solution-processed MR-OLEDs were fabricated for the first time,exhibiting efficient bluish-green electroluminescence with narrow FWHM of 32 nm and external quantum efficiency of 16.3%,which are even comparable to the state-of-the-art performances of the vacuum-evaporated devices.These results prove the feasibility of designing efficient solutionprocessible MR molecules,offering important clues in developing high-performance solution-processed MR-OLEDs with high efficiency and color purity. 展开更多
关键词 MULTI-RESONANCE Thermally activated delayed fluorescence solution-processed devices Charge-transfer delocalization Narrowband emission
原文传递
Full-solution-processed high mobility zinc-tin-oxide thin-film-transistors 被引量:2
15
作者 ZHANG YunGe HUANG GenMao +3 位作者 DUAN Lian DONG GuiFang ZHANG DeQiang QIU Yong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第9期1407-1412,共6页
The full solution-processed oxide thin-film-transistors(TFTs) have the advantages of transparency, ease of large-area fabrication, and low cost, offering great potential applications in switching and driving fields, a... The full solution-processed oxide thin-film-transistors(TFTs) have the advantages of transparency, ease of large-area fabrication, and low cost, offering great potential applications in switching and driving fields, and attracting extensive research interest. However, the performance of the solution-processed TFTs is generally lower than that of the vacuum-deposited ones. In this article, the full-solution processed TFTs with zinc-tin-oxide(ZTO) semiconductor and aluminium(Al_2O_3) dielectrics were fabricated, and their mobilities in the saturation region are high. Besides, the effect of the Al_2O_3 dielectrics' preparation technology on ZTO TFTs' performance was studied. Comparing the ZTO TFTs using the spin-coated Al_2O_3 dielectrics of 1–4 layers, the ZTO TFT with 3-layer Al_2O_3 dielectrics achieved the optimal performance as its field-effect carrier mobility in the saturation region is 112 cm^2/V s, its threshold voltage is 2.4 V, and its on-to-off current ratio is 2.8×105. This is also the highest reported carrier mobility of the solution-processed ZTO TFTs. 展开更多
关键词 solution-processed ZTO TFT Al_2O_3 preparation technology
原文传递
Preparation and properties of solution-processed zinc tin oxide films from a new organic precursor 被引量:1
16
作者 ZHAO YunLong,DUAN Lian,QIAO Juan,ZHANG DeQiang,DONG GuiFang,WANG LiDuo & QIU Yong Key Laboratory of Organic Optoelectronics & Molecular Engineering,Ministry of Education Department of Chemistry,Tsinghua University,Beijing 100084,China 《Science China Chemistry》 SCIE EI CAS 2011年第4期651-655,共5页
Transparent,smooth and dense zinc tin oxide (ZTO) thin films have been successfully produced by using a new precursor solution,zinc acetate and tin(II) 2-ethylhexanoate mixed with 2-ethanolamine in methoxyethanol.The ... Transparent,smooth and dense zinc tin oxide (ZTO) thin films have been successfully produced by using a new precursor solution,zinc acetate and tin(II) 2-ethylhexanoate mixed with 2-ethanolamine in methoxyethanol.The ZTO films have been prepared by spin-coating,followed by thermal treatment in oxygen atmosphere.The morphology,composition,crystallinity and band gap energy (Eg) of the ZTO thin films have been characterized by Atomic Force Microscopy (AFM),Atomic Emission Spectrometry (AES),X-ray Diffraction (XRD) and UV-vis spectrophotometry.The conductivity of ZTO is about 9.8×10-9 S/cm,as estimated from the current-voltage (I-V) curve.The effect of the thermal treatment process on the morphology of ZTO thin films is also discussed. 展开更多
关键词 zinc tin oxide (ZTO) solution-processed organic precursor thermal treatment process conductivity TRANSPARENT
原文传递
Solution-processed quantum dot SnO_(2) as an interfacial electron transporter for stable fully-air-fabricated metal-free perovskite solar cells 被引量:1
17
作者 Rabie M.Youssef A.M.S.Salem +4 位作者 Ahmed Shawky Shaker Ebrahim Moataz Soliman Mohamed S.A.Abdel-Mottaleb Said M.El-Sheikh 《Journal of Materiomics》 SCIE 2022年第6期1172-1183,共12页
Perovskite solar cells could strongly compete with the silicon solar cells in the market soon as illustrated in recent studies.In this work,promising and stable metal-free perovskite solar cells(PSCs)has been successf... Perovskite solar cells could strongly compete with the silicon solar cells in the market soon as illustrated in recent studies.In this work,promising and stable metal-free perovskite solar cells(PSCs)has been successfully fabricated using an inorganic SnO_(2)/Quantum dot SnO_(2)(QD-SnO_(2))double layer as an efficient electron transport layer via a low-temperature solution process.The fully-air fabricated PSCs in the form of FTO/SnO_(2)/QD-SnO_(2)/CH3NH3PbI3/Carbon were tested at different annealed QD-SnO_(2) between 300 and 500℃.The as-prepared QD-SnO_(2) and the fabricated devices are characterized by various techniques,including XRD,XPS,HR-TEM,FE-SEM,UVeviseNIR spectroscopy,PL,and solar simulator.The prepared QD-SnO_(2) at 300℃ has shown well-ordered nanoparticles of 5.6 nm in diameter with superior carrier density(1.5×10^(15) cm^(-3))and highest carrier mobility(64.1 cm^(2)·V^(-1)·s^(-1)),accelerating the carriers separation process within the cell.The best devices demonstrated a maximum power conversion effi-ciency(PCE)of 11.7%,VOC 0.81 V,JSC 19.5 mA·cm^(-2),and FF 74%.The presence of an interfacial layer of QDSnO_(2) over the blocking SnO_(2) upsurges the band gaps alignment and accelerates the carriers extraction rate affecting the performance of the fabricated perovskite devices.Moreover,the optimized fabricated devices revealed a shelf stability-life of four months in humid air(40%-50%)with>83%of its initial PCE.This simple synthetic approach can develop the opportunities to transfer the cell from the lab to the market,which will be compatible with large-scale production. 展开更多
关键词 solution-processed nanomaterials Perovskite solar cells Electron transport layer Thin film Quantum Dot-SnO_(2)
原文传递
Self-host yellow iridium dendrimers based on carbazole dendrons: synthesis, characterization and application in solution-processed organic light-emitting diodes
18
作者 Bin Wang Shiyang Shao +3 位作者 Junqiao Ding Lixiang Wang Xiabin Jing Fosong Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第12期1593-1599,共7页
On the basis of different generation carbazole dendrons, a series of self-host yellow Ir dendrimers (Y-G0, Y-G1 and-G2) have been successfully synthesized and characterized in detail. It is found that the peripheral... On the basis of different generation carbazole dendrons, a series of self-host yellow Ir dendrimers (Y-G0, Y-G1 and-G2) have been successfully synthesized and characterized in detail. It is found that the peripheral dendrons can effectively reduce the intermolecular interactions between emissive Ir cores, as verified by the increased photoluminescence quantum yields and film lifetimes. Among these dendrimers, Y-G2 bearing the second generation dendrons shows the best non-doped device per- formance, revealing a peak luminous efficiency of 20.2 cd/A. The value is nearly twice that of Y-G0 without any dendrons, which could be further improved to 32.1 cd/A by dispersing Y-G2 into a host matrix. We believe that this work will shed light on the development of highly efficient yellow phosphorescent dendrimers with a self-host strategy. 展开更多
关键词 IRIDIUM DENDRIMERS CARBAZOLE self-host solution-processed OLEDs
原文传递
Fast response ultraviolet photodetectors based on solution-processed ZnO nanocrystals
19
作者 ZHANG TongShuo YU Ji +2 位作者 DENG YuFu TIAN Ning GAO Peng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第8期1328-1332,共5页
By utilizing Schottky contact in device fabrication,we have constructed fast response ultraviolet photodetectors based on the solution-processed Zn O nanocrystals.At 5 V,the detector exhibits fast photoresponse with a... By utilizing Schottky contact in device fabrication,we have constructed fast response ultraviolet photodetectors based on the solution-processed Zn O nanocrystals.At 5 V,the detector exhibits fast photoresponse with a rise time of 20 ns and fall time of 350 ns,which is one of the fastest response time among the reported Zn O-based photodetectors.The results reported in this paper may show great promise for fast response optoelectronic devices based on the solution-processed nanocrystals. 展开更多
关键词 ultraviolet photodetector solution-processed nanocrystal ZNO fast response
原文传递
Dipyrrin-based Complexes for Solution-processed Organic Solar Cells
20
作者 ZOU Liyun GUAN Shuang +1 位作者 LI Leijiao ZHAO Li 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2015年第5期801-808,共8页
Three dipyrrin-containing metal complexes and a boron dipyrromethene(BODIPY)-containing complex were designed and synthesized. The photophysical properties, electrochemical behaviours and photovoltaic performance we... Three dipyrrin-containing metal complexes and a boron dipyrromethene(BODIPY)-containing complex were designed and synthesized. The photophysical properties, electrochemical behaviours and photovoltaic performance were extensively investigated. Density functional theory calculations were also performed on those complexes These complexes, together with electron-acceptor [6,6]-phenyl-C71-butyric acid methyl ester, were utilized for the fabrication of solution-processed bulk heterojunction solar cells as the electron-donor materials. The more efficient electron acceptor BODIPY segment renders a lower energy gap and a relatively better photovoltaic conversion efficiency of 0.58%. These results prove that BODIPY segment has a great potential for constructing efficient organic solar cell materials. 展开更多
关键词 Dipyrrin-metal Boron dipyrromethene(BODIPY) solution-processed BULK-HETEROJUNCTION Organic solar cell
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部