We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the numb...We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the number of inner iterations in advance. The latter is to use the inexact Newton method for solution of the linear system of equations that arises at each stage of outer iterations. We give some new choices of iteration parameter and of forcing term, that ensure the convergence of iterations. The performance and efficiency of the proposed iteration is illustrated by numerical examples that represent a wide range of typical systems.展开更多
In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
In this paper, we consider solving dense linear equations on Dawning1000 byusing matrix partitioning technique. Based on this partitioning of matrix, we give aparallel block LU decomposition method. The efficiency of ...In this paper, we consider solving dense linear equations on Dawning1000 byusing matrix partitioning technique. Based on this partitioning of matrix, we give aparallel block LU decomposition method. The efficiency of solving linear equationsby different ways is analysed. The numerical results are given on Dawning1000.By running our parallel program, the best speed up on 32 processors is over 25.展开更多
将求解线性方程组的Gauss-Jordan消去法与Gauss列主元消去法结合起来,提出了利用并行计算支撑软件PVM在局域网上高效并行求解稠密线性方程组的算法.该算法处理机间的通信开销较少,实现了负载平衡和各处理机间的全并行工作.用1~24台桌...将求解线性方程组的Gauss-Jordan消去法与Gauss列主元消去法结合起来,提出了利用并行计算支撑软件PVM在局域网上高效并行求解稠密线性方程组的算法.该算法处理机间的通信开销较少,实现了负载平衡和各处理机间的全并行工作.用1~24台桌面PC机按两种网络布局方式连接成的局域网,在PVM3.4 on Windows2000、VC 6.0并行计算平台上编程对该算法进行了数值试验,得到了正确的结果.展开更多
文摘We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the number of inner iterations in advance. The latter is to use the inexact Newton method for solution of the linear system of equations that arises at each stage of outer iterations. We give some new choices of iteration parameter and of forcing term, that ensure the convergence of iterations. The performance and efficiency of the proposed iteration is illustrated by numerical examples that represent a wide range of typical systems.
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.
文摘In this paper, we consider solving dense linear equations on Dawning1000 byusing matrix partitioning technique. Based on this partitioning of matrix, we give aparallel block LU decomposition method. The efficiency of solving linear equationsby different ways is analysed. The numerical results are given on Dawning1000.By running our parallel program, the best speed up on 32 processors is over 25.
文摘将求解线性方程组的Gauss-Jordan消去法与Gauss列主元消去法结合起来,提出了利用并行计算支撑软件PVM在局域网上高效并行求解稠密线性方程组的算法.该算法处理机间的通信开销较少,实现了负载平衡和各处理机间的全并行工作.用1~24台桌面PC机按两种网络布局方式连接成的局域网,在PVM3.4 on Windows2000、VC 6.0并行计算平台上编程对该算法进行了数值试验,得到了正确的结果.