The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct n...The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.展开更多
The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their appl...The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their applications,focused on elasticity,heat conduction,electromagnetic field analysis,and fluid dynamics.The merits of the collocation method can be attributed to the need for element mesh,simple implementation,high computational efficiency,and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method.Beginning with the fundamental principles of the collocation method,the discretization process in the continuous domain is elucidated,and how the collocation method approximation solutions for solving differential equations are explained.Delving into the historical development of the collocation methods,their earliest applications and key milestones are traced,thereby demonstrating their evolution within the realm of numerical computation.The mathematical foundations of collocation methods,encompassing the selection of interpolation functions,definition of weighting functions,and derivation of integration rules,are examined in detail,emphasizing their significance in comprehending the method’s effectiveness and stability.At last,the practical application of the collocation methods in engineering contexts is emphasized,including heat conduction simulations,electromagnetic coupled field analysis,and fluid dynamics simulations.These specific case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex engineering challenges.In conclusion,this paper puts forward the future development trend of the collocation method through rigorous analysis and discussion,thereby facilitating further advancements in research and practical applications within these fields.展开更多
In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state pr...In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate...Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.展开更多
The investigation of leachate-contaminated clay(LCC)is essential for landfill engineering assessment and achievement of sustainable development goals.Several static and dynamic laboratory tests,including unconfined co...The investigation of leachate-contaminated clay(LCC)is essential for landfill engineering assessment and achievement of sustainable development goals.Several static and dynamic laboratory tests,including unconfined compressive strength(UCS),California bearing ratio(CBR),and cyclic simple shear,are conducted.Cyclic simple shear experiments on LCCs were performed to evaluate the damping and shear modulus.The investigated factors are vertical load(VL),leachate content(LC),frequency(F),and shear strain(ShS)for LCC.Forensic-based investigation optimization(FBIO)and equilibrium optimizer algorithm(EOA)were utilized in addition to multiple types of ensemble models,including adaptive boosting(ADB),gradient boosting regression tree(GBRT),extreme gradient boosting(XGB) and random forest(RF).The comparison of the methods showed that GBRT-FBIO and XGB-EOA models outperformed other models for shear modulus and damping of LCC.The p-value less than 0.0001 shows the significance of the used models in the response surface methodology(RSM)method.展开更多
BACKGROUND Gastric ulcer perforation is a critical condition that can lead to significant morbidity and mortality if not promptly addressed.It is often the result of chronic peptic ulcer disease,which is characterized...BACKGROUND Gastric ulcer perforation is a critical condition that can lead to significant morbidity and mortality if not promptly addressed.It is often the result of chronic peptic ulcer disease,which is characterized by a breach in the gastric wall due to ulceration.Surgical intervention is essential for managing this life-threatening complication.However,the optimal surgical technique remains debatable among clinicians.Various methods have been employed,including simple closure,omental patch repair,and partial gastrectomy,each with distinct advantages and disadvantages.Understanding the comparative efficacy and postoperative outcomes of these techniques is crucial for improving patient care and surgical decision-making.This study addresses the need for a comprehensive analysis in this area.AIM To compare the efficacy and postoperative complications of different surgical methods for the treatment of gastric ulcer perforation.METHODS A retrospective analysis was conducted on 120 patients who underwent surgery for gastric ulcer perforation between September 2020 and June 2023.The patients were divided into three groups based on the surgical method:Simple closure,omental patch repair,and partial gastrectomy.The primary outcomes were the operative success rate and incidence of postoperative complications.Secondary outcomes included the length of hospital stay,recovery time,and long-term quality of life.RESULTS The operative success rates for simple closure,omental patch repair,and partial gastrectomy were 92.5%,95%,and 97.5%,respectively.Postoperative complications occurred in 20%,15%,and 17.5%of patients in each group,respectively.The partial gastrectomy group showed a significantly longer operative time(P<0.001)but the lowest rate of ulcer recurrence(2.5%,P<0.05).The omental patch repair group demonstrated the shortest hospital stay(mean 7.2 days,P<0.05)and fastest recovery time.CONCLUSION While all three surgical methods showed high success rates,omental patch repair demonstrated the best overall outcomes,with a balance of high efficacy,low complication rates,and shorter recovery time.However,the choice of the surgical method should be tailored to individual patient factors and the surgeon’s expertise.展开更多
The purpose of this paper is to study the solution of the celebrated Whittaker equations by using analytical mechanics methods, including the Lagrange-Noether method, Hamilton-Poisson method and potential integral met...The purpose of this paper is to study the solution of the celebrated Whittaker equations by using analytical mechanics methods, including the Lagrange-Noether method, Hamilton-Poisson method and potential integral method.展开更多
In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order...In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.展开更多
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
A differential equation of first order can be expressed by the equation of motion of a mechanical system. In this paper, three methods of analytical mechanics, i.e. the Hamilton-Noether method, the Lagrange-Noether me...A differential equation of first order can be expressed by the equation of motion of a mechanical system. In this paper, three methods of analytical mechanics, i.e. the Hamilton-Noether method, the Lagrange-Noether method and the Poisson method, are given to solve a differential equation of first order, of which the way may be called the mechanical methodology in mathematics.展开更多
The classical iterative methods for finding roots of nonlinear equations,like the Newton method,Halley method,and Chebyshev method,have been modified previously to achieve optimal convergence order.However,the Househo...The classical iterative methods for finding roots of nonlinear equations,like the Newton method,Halley method,and Chebyshev method,have been modified previously to achieve optimal convergence order.However,the Householder method has so far not been modified to become optimal.In this study,we shall develop two new optimal Newton-Householder methods without memory.The key idea in the development of the new methods is the avoidance of the need to evaluate the second derivative.The methods fulfill the Kung-Traub conjecture by achieving optimal convergence order four with three functional evaluations and order eight with four functional evaluations.The efficiency indices of the methods show that methods perform better than the classical Householder’s method.With the aid of convergence analysis and numerical analysis,the efficiency of the schemes formulated in this paper has been demonstrated.The dynamical analysis exhibits the stability of the schemes in solving nonlinear equations.Some comparisons with other optimal methods have been conducted to verify the effectiveness,convergence speed,and capability of the suggested methods.展开更多
In this paper, we establish two new iterative methods of order four and five by using modified homotopy perturbation technique. We also present the convergence analysis of these iterative methods. To assess the validi...In this paper, we establish two new iterative methods of order four and five by using modified homotopy perturbation technique. We also present the convergence analysis of these iterative methods. To assess the validity and performance of these iterative methods, we have applied to solve some nonlinear problems.展开更多
In this paper, we present a family of general New to n-like methods with a parametric function for finding a zero of a univariate fu nction, permitting f′(x)=0 in some points. The case of multiple roots is n ot treat...In this paper, we present a family of general New to n-like methods with a parametric function for finding a zero of a univariate fu nction, permitting f′(x)=0 in some points. The case of multiple roots is n ot treated. The methods are proved to be quadratically convergent provided the w eak condition. Thus the methods remove the severe condition f′(x)≠0. Based on the general form of the Newton-like methods, a family of new iterative meth ods with a variable parameter are developed.展开更多
In this paper, we discuss the parallel domain decomposition method(DDM)for solving PDE's on parallel computers. Three types of DDM: DDM with overlapping, DDM without overlapping and DDM with fictitious component a...In this paper, we discuss the parallel domain decomposition method(DDM)for solving PDE's on parallel computers. Three types of DDM: DDM with overlapping, DDM without overlapping and DDM with fictitious component are discussed in a uniform framework. The eonvergence of the asynchronous parallel algorithms based on DDM are discussed.展开更多
This paper presents a new family of twelfth-order methods for solving simple roots of nonlinear equations which greatly improves the order of convergence and the computational efficiency of the Newton’s method and so...This paper presents a new family of twelfth-order methods for solving simple roots of nonlinear equations which greatly improves the order of convergence and the computational efficiency of the Newton’s method and some other known methods.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral ...The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.展开更多
Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial ...Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial guess or the subsequent updated solution.In the second type,the NBE is rearranged into a quadratic form of the absolute vorticity with the positive root of this quadratic form used in the form of a Poisson equation to solve NBE iteratively.The two methods are rederived by expanding the solution asymptotically upon a small Rossby number,and a criterion for optimally truncating the asymptotic expansion is proposed to obtain the super-asymptotic approximation of the solution.For each rederived method,two iterative procedures are designed using the integral-form Poisson solver versus the over-relaxation scheme to solve the boundary value problem in each iteration.Upon testing with analytically formulated wavering jet flows on the synoptic,sub-synoptic and meso-αscales,the iterative procedure designed for the first method with the Poisson solver,named M1a,is found to be the most accurate and efficient.For the synoptic wavering jet flow in which the NBE is entirely elliptic,M1a is extremely accurate.For the sub-synoptic wavering jet flow in which the NBE is mostly elliptic,M1a is sufficiently accurate.For the meso-αwavering jet flow in which the NBE is partially hyperbolic so its boundary value problem becomes seriously ill-posed,M1a can effectively reduce the solution error for the cyclonically curved part of the wavering jet flow,but not for the anti-cyclonically curved part.展开更多
基金supported by the Japan Society for the Promotion of Science,KAKENHI Grant No.23H00475.
文摘The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.
基金the National Natural Science Foundation of China for financial support to this work under Grant NSFC No.12072064.
文摘The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their applications,focused on elasticity,heat conduction,electromagnetic field analysis,and fluid dynamics.The merits of the collocation method can be attributed to the need for element mesh,simple implementation,high computational efficiency,and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method.Beginning with the fundamental principles of the collocation method,the discretization process in the continuous domain is elucidated,and how the collocation method approximation solutions for solving differential equations are explained.Delving into the historical development of the collocation methods,their earliest applications and key milestones are traced,thereby demonstrating their evolution within the realm of numerical computation.The mathematical foundations of collocation methods,encompassing the selection of interpolation functions,definition of weighting functions,and derivation of integration rules,are examined in detail,emphasizing their significance in comprehending the method’s effectiveness and stability.At last,the practical application of the collocation methods in engineering contexts is emphasized,including heat conduction simulations,electromagnetic coupled field analysis,and fluid dynamics simulations.These specific case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex engineering challenges.In conclusion,this paper puts forward the future development trend of the collocation method through rigorous analysis and discussion,thereby facilitating further advancements in research and practical applications within these fields.
基金supported by the NSFC Grant No.11872210 and Grant No.MCMS-I-0120G01Chi-Wang Shu:Research is supported by the AFOSR Grant FA9550-20-1-0055 and the NSF Grant DMS-2010107Jianxian Qiu:Research is supported by the NSFC Grant No.12071392.
文摘In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金the financial support provided by MHRD,Govt.of IndiaCoal India Limited for providing financial assistance for the research(Project No.CIL/R&D/01/73/2021)the partial financial support provided by the Ministry of Education,Government of India,under SPARC project(Project No.P1207)。
文摘Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.
文摘The investigation of leachate-contaminated clay(LCC)is essential for landfill engineering assessment and achievement of sustainable development goals.Several static and dynamic laboratory tests,including unconfined compressive strength(UCS),California bearing ratio(CBR),and cyclic simple shear,are conducted.Cyclic simple shear experiments on LCCs were performed to evaluate the damping and shear modulus.The investigated factors are vertical load(VL),leachate content(LC),frequency(F),and shear strain(ShS)for LCC.Forensic-based investigation optimization(FBIO)and equilibrium optimizer algorithm(EOA)were utilized in addition to multiple types of ensemble models,including adaptive boosting(ADB),gradient boosting regression tree(GBRT),extreme gradient boosting(XGB) and random forest(RF).The comparison of the methods showed that GBRT-FBIO and XGB-EOA models outperformed other models for shear modulus and damping of LCC.The p-value less than 0.0001 shows the significance of the used models in the response surface methodology(RSM)method.
文摘BACKGROUND Gastric ulcer perforation is a critical condition that can lead to significant morbidity and mortality if not promptly addressed.It is often the result of chronic peptic ulcer disease,which is characterized by a breach in the gastric wall due to ulceration.Surgical intervention is essential for managing this life-threatening complication.However,the optimal surgical technique remains debatable among clinicians.Various methods have been employed,including simple closure,omental patch repair,and partial gastrectomy,each with distinct advantages and disadvantages.Understanding the comparative efficacy and postoperative outcomes of these techniques is crucial for improving patient care and surgical decision-making.This study addresses the need for a comprehensive analysis in this area.AIM To compare the efficacy and postoperative complications of different surgical methods for the treatment of gastric ulcer perforation.METHODS A retrospective analysis was conducted on 120 patients who underwent surgery for gastric ulcer perforation between September 2020 and June 2023.The patients were divided into three groups based on the surgical method:Simple closure,omental patch repair,and partial gastrectomy.The primary outcomes were the operative success rate and incidence of postoperative complications.Secondary outcomes included the length of hospital stay,recovery time,and long-term quality of life.RESULTS The operative success rates for simple closure,omental patch repair,and partial gastrectomy were 92.5%,95%,and 97.5%,respectively.Postoperative complications occurred in 20%,15%,and 17.5%of patients in each group,respectively.The partial gastrectomy group showed a significantly longer operative time(P<0.001)but the lowest rate of ulcer recurrence(2.5%,P<0.05).The omental patch repair group demonstrated the shortest hospital stay(mean 7.2 days,P<0.05)and fastest recovery time.CONCLUSION While all three surgical methods showed high success rates,omental patch repair demonstrated the best overall outcomes,with a balance of high efficacy,low complication rates,and shorter recovery time.However,the choice of the surgical method should be tailored to individual patient factors and the surgeon’s expertise.
基金Project supported by the National Natural Science Foundation (Grant No 10572021) and the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘The purpose of this paper is to study the solution of the celebrated Whittaker equations by using analytical mechanics methods, including the Lagrange-Noether method, Hamilton-Poisson method and potential integral method.
文摘In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272021) and the Doctorate Foundation of the State Education Ministry of China (Grant No 20040007022).
文摘A differential equation of first order can be expressed by the equation of motion of a mechanical system. In this paper, three methods of analytical mechanics, i.e. the Hamilton-Noether method, the Lagrange-Noether method and the Poisson method, are given to solve a differential equation of first order, of which the way may be called the mechanical methodology in mathematics.
基金This research was supported by Universiti Kebangsaan Malaysia under research grant GUP-2019-033.
文摘The classical iterative methods for finding roots of nonlinear equations,like the Newton method,Halley method,and Chebyshev method,have been modified previously to achieve optimal convergence order.However,the Householder method has so far not been modified to become optimal.In this study,we shall develop two new optimal Newton-Householder methods without memory.The key idea in the development of the new methods is the avoidance of the need to evaluate the second derivative.The methods fulfill the Kung-Traub conjecture by achieving optimal convergence order four with three functional evaluations and order eight with four functional evaluations.The efficiency indices of the methods show that methods perform better than the classical Householder’s method.With the aid of convergence analysis and numerical analysis,the efficiency of the schemes formulated in this paper has been demonstrated.The dynamical analysis exhibits the stability of the schemes in solving nonlinear equations.Some comparisons with other optimal methods have been conducted to verify the effectiveness,convergence speed,and capability of the suggested methods.
文摘In this paper, we establish two new iterative methods of order four and five by using modified homotopy perturbation technique. We also present the convergence analysis of these iterative methods. To assess the validity and performance of these iterative methods, we have applied to solve some nonlinear problems.
文摘In this paper, we present a family of general New to n-like methods with a parametric function for finding a zero of a univariate fu nction, permitting f′(x)=0 in some points. The case of multiple roots is n ot treated. The methods are proved to be quadratically convergent provided the w eak condition. Thus the methods remove the severe condition f′(x)≠0. Based on the general form of the Newton-like methods, a family of new iterative meth ods with a variable parameter are developed.
基金The project supported by National Natural Science Fundation of China.
文摘In this paper, we discuss the parallel domain decomposition method(DDM)for solving PDE's on parallel computers. Three types of DDM: DDM with overlapping, DDM without overlapping and DDM with fictitious component are discussed in a uniform framework. The eonvergence of the asynchronous parallel algorithms based on DDM are discussed.
文摘This paper presents a new family of twelfth-order methods for solving simple roots of nonlinear equations which greatly improves the order of convergence and the computational efficiency of the Newton’s method and some other known methods.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.
基金This study was funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.11702238,51904202 and 11902212)and Nanhu Scholars Program for Young Scholars of XYNU.
文摘The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.
基金the NSF of China Grants 91937301 and 41675060,the National Key Scientific and Technological Infrastructure Project"EarthLab",and the ONR Grants N000141712375 and N000142012449 to the University of Oklahoma(OU)The numerical experiments were performed at the OU supercomputer SchoonerCIMMS by NOAA/Office of Oceanic and Atmospheric Research under NOAA-OU Cooperative Agreement#NA110AR4320072,U.S.Department of Commerce.
文摘Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial guess or the subsequent updated solution.In the second type,the NBE is rearranged into a quadratic form of the absolute vorticity with the positive root of this quadratic form used in the form of a Poisson equation to solve NBE iteratively.The two methods are rederived by expanding the solution asymptotically upon a small Rossby number,and a criterion for optimally truncating the asymptotic expansion is proposed to obtain the super-asymptotic approximation of the solution.For each rederived method,two iterative procedures are designed using the integral-form Poisson solver versus the over-relaxation scheme to solve the boundary value problem in each iteration.Upon testing with analytically formulated wavering jet flows on the synoptic,sub-synoptic and meso-αscales,the iterative procedure designed for the first method with the Poisson solver,named M1a,is found to be the most accurate and efficient.For the synoptic wavering jet flow in which the NBE is entirely elliptic,M1a is extremely accurate.For the sub-synoptic wavering jet flow in which the NBE is mostly elliptic,M1a is sufficiently accurate.For the meso-αwavering jet flow in which the NBE is partially hyperbolic so its boundary value problem becomes seriously ill-posed,M1a can effectively reduce the solution error for the cyclonically curved part of the wavering jet flow,but not for the anti-cyclonically curved part.