Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other...Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods.This indicates the potential epigenetic variations between them.DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences.In this study,ASMT(acetylserotonin-Omethyltransferase)ovarian overexpression transgenic goat was produced by using SCNT.To investigate whether there are epigenetic differences between cloned and WT(wild type)goats,WGBS(whole-genome bisulfite sequencing)was used to measure the whole-genome methylation of these animals.Results:It is observed that the different m Cp G sites are mainly present in the intergenic and intronic regions between cloned and WT animals,and their CG-type methylation sites are strongly correlated.DMR(differentially methylated region)lengths are located around 1000 bp,mainly distributed in the exonic,intergenic and intronic functional domains.A total of 56 and 36 DMGs(differentially methylated genes)were identified by GO and KEGG databases,respectively.Functional annotation showed that DMGs were enriched in biological-process,cellularcomponent,molecular-function and other signaling pathways.A total of 10 identical genes related to growth and development were identified in GO and KEGG databases.Conclusion:The differences in methylation genes among the tested animals have been identified.A total of 10 DMGs associated with growth and development were identified between cloned and WT animals.The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT.These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology,particularly in goats.展开更多
The current study was undertaken to evaluate the possibility of producing a human pro-insulin transgenic cow by means of somatic cell nuclear transfer (SCNT). A double selection system, Neomycin resistance (Neo^r)...The current study was undertaken to evaluate the possibility of producing a human pro-insulin transgenic cow by means of somatic cell nuclear transfer (SCNT). A double selection system, Neomycin resistance (Neo^r) gene and enhanced green fluorescent protein (EGFP) gene linked through an inner ribosomal entry site (IRES) sequence directed by a Cytomegalovirus (CMV) promoter, was used for enrichment and selection of the transgenic cells and preimplantation embryos. Transgenes were introduced into bovine fetal fibroblast cells (BFF) cultured in vitro through electroporation (900 V/cm, 5 ms). Transgenic bovine fibroblast cells (TBF) were enriched through addition of G418 in culture medium (800 μg/mL). Before being used as a nuclear donor, the TBF cells were either cultured in normal conditions (10% FBS) or treated with serum starvation (0.5% FBS for 2-4 days) followed by 10 hours recovery for G1 phase synchronization. Transgenic cloned embryos were produced through GFP-expressing cell selection and SCNT. The results were the percentage of blastocyst development following SCNT was lower using TBF than BFF cells (23.2% VS 35.2%, P 〈 0.05). No difference in the percentage of cloned blastocysts between the two groups of transgenic nuclear donor of normal and starvation cultures were observed (23.2% VS 18.9%, P 〉 0.05). Two to four GFP-expressing blastocysts were transferred into the uterus of each synchronised recipient. One pregnancy from of seven recipients (21 embryos) was confirmed by rectum palpation 60 days after embryo transfer and one recipient has given birth to a calf at term. PCR and DNA sequencing analysis confirmed that the calf was produced using human proinsulin transgenic animal.展开更多
This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (St...This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.展开更多
To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the ...To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and 60 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of the donor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PCR and immunocytochemistry with probes that distinguish between the various species. The ntES cells maintain the capability of sustained growth in an undifferentiated state, and form embryoid bodies, which, on further induction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that express markers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NT to rabbit eggs retain phenotypes similar to those of conventional human ES cells, including the ability to undergo multilineage cellular differentiation.展开更多
Atherosclerotic cardiovascular disease is the leading cause of death in the world which is resulted from complex interactions among multiple genetic and environmental factors (WHO). Athero- sclerosis is a chronic in...Atherosclerotic cardiovascular disease is the leading cause of death in the world which is resulted from complex interactions among multiple genetic and environmental factors (WHO). Athero- sclerosis is a chronic inflammatory disease characterized by accumulation of lipids in the arterial wall (Gofman and Lindgren, 1950). Tremendous clinical and experimental efforts have been made to reveal the pathogenesis of the disease. Nevertheless, the mechanism of atherosclerosis is still unclear. A suitable animal model to study metabolic disorders and subsequent atherosclerosis is a necessity. The traditional method by feeding high fat diet to establish animal models of atherosclerosis disease is time- consuming and laborious, and in many circumstances, the pheno- types are not consistent among the individual models.展开更多
Objective To analyze the blastocyst formation and chromosome statuses of reconstructed embryos derived from human-goat interspecies somatic cell nuclear transfer (iSCNT), exploring the development retardant factors....Objective To analyze the blastocyst formation and chromosome statuses of reconstructed embryos derived from human-goat interspecies somatic cell nuclear transfer (iSCNT), exploring the development retardant factors. Methods Human specific point probes cep2, cep6, tel2 and 13q14.2, 21q22.13 combining fluorescence in-situ hybridization (FISH) technology were used to test trophectoderm cells of blastocyst and blastomeres of development arrest nuclear transfer (NT) embryos. Results A total of 209 reconstructed embryos were recovered, and the rate of blastocyst formation was 3.8% (8/209). FISH signals showed that chromosomal abnormalities were present in 2 blastocysts (2/8) and 146 development arrest embryos (146/201). Conclusion The rate of blastocyst formation is low, and reconstituted embryos of development arrest showed extensive chromosome abnormalities, suggesting that a chromosomal mechanism may underlie their developmental arrest.展开更多
PiggyBac transposon has demonstrated its long-term and stable transposition on genomes of various species but lacking of the evidence on farm animal genomes. In this study, we constructed a piggyBac transposon marked ...PiggyBac transposon has demonstrated its long-term and stable transposition on genomes of various species but lacking of the evidence on farm animal genomes. In this study, we constructed a piggyBac transposon marked with enhanced green fluorescent protein (eGFP) and showed efficient transposition in porcine somatic cells and cloned embryos. Our results demonstrated that piggyBac transposase could efficiently catalyze transposition in porcine fetal fibroblast cells, as well as in embryos. PiggyBac transposition generated 18-fold more eGFP-positive cell colonies compared to pEGFP-C1 random insertion mutagenesis, but excessive transposase might affect the transfection rate. Also piggyBac mediated 4-fold more eGFP expression than random insertion in cells and 17-fold in cloned embryos at mRNA level. When the mutagenized cells were used for somatic cell nuclear transfer (SCNT), the cleavage rate and blastocyst rate of constructed embryos harboring piggyBac transposition had no difference with random insertion group. This study provides key information on the piggyBac transposon system as a tool for creating transgenic pigs.展开更多
High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning. It is known that one of the importa...High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning. It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation. DNA methylation is established and maintained by DNA methyltransferases (DNMTs), therefore, it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs. Since DNA methylation can strongly inhibit gene expression, aberrant DNA methylation of DNMT genes may disturb gene expression. But presently, it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos. In our study, we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a, Dnmt3b, Dnmtl and Dnmt2 in four aborted bovine clones. Using bisulfite sequencing method, we found that 3 out of 4 aborted bovine clones (AF1, AF2 and AF3) showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b, indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed. However, the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF) fetuses. Besides, we found that the 5' regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults, IVF fetuses, sperm and aborted clones. Together, our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.展开更多
Stem cells have the remarkable potential to develop into many different cell types, essentially with- out limit to replenish other cells as long as the person or animal is still alive, offering immense hope of curing ...Stem cells have the remarkable potential to develop into many different cell types, essentially with- out limit to replenish other cells as long as the person or animal is still alive, offering immense hope of curing Alzheimer's disease, repairing damaged spinal cords, treating kidney, liver and lung diseases and making damaged hearts whole. Until recently, scientists primarily worked with two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic "somatic" or "adult" stem cells. Recent breakthrough make it possible to convert or "reprogram" specialized adult cells to assume a stem stem-like cells with different technologies. The review will briefly dis- cuss the recent progresses in this area.展开更多
The 2012 Nobel Prize in Physiology or Medicine was awarded jointly to Sir John B Gurdon and Shinya Ya-manaka “for the discovery that mature cells can be re-programmed to become pluripotent”. Professor John B Gordon ...The 2012 Nobel Prize in Physiology or Medicine was awarded jointly to Sir John B Gurdon and Shinya Ya-manaka “for the discovery that mature cells can be re-programmed to become pluripotent”. Professor John B Gordon who pioneered the feld of somatic cell nuclear transfer was the frst to show that a nucleus of a ma-ture cell can be transplanted into an enucleated egg and give rise to a living organism. His pioneering “clon-ing” technique paved the way for genome reprogram-ming and has led to subsequent cloning of differentani-mal species. Professor Shinya Yamanaka revolutionized the fled of stem cell production by showing that the introduction of four selected genes into cells transform them into induced pluripotent stem cells that resemble embryonic stem cells and serve as promising cells for future regenerative medicine.展开更多
Handmade cloning (HMC) is the most awaited, simple and micromanipulator-ffee version of somatic cell nuclear transfer (SCNT). The requirement of expensive micromanipulators and skilled expertise is eliminated in t...Handmade cloning (HMC) is the most awaited, simple and micromanipulator-ffee version of somatic cell nuclear transfer (SCNT). The requirement of expensive micromanipulators and skilled expertise is eliminated in this technique, proving it as a major revolution in the field of embryology. During the past years, many modifications have been incorporated in this technique to boost its efficiency. This alternative approach to micromanipulator based traditional cloning O-C) works wonder in generating comparable or even higher birth rates in addition to declining costs drastically and enabling cryopreservation. This technique is not only applicable to intraspecies nuclear transfer but also to interspecies nuclear transfer (iSCNT) thus permitting conservation of endangered species. It also offers unique possibilities for automation of SCNT which aims at production of transgenic animals that can cure certain human diseases by producing therapeutics hence, providing a healthier future for the wellbeing of humans. The present review aims at highlighting certain aspects of HMC including recent advancements in procedure and factors involved in elevating its efficiency besides covering the potentials and pitfalls of this technique展开更多
Therapeutic cloning,which is based on human somatic cell nuclear transfer,is one of our major research objectives.Though inter-species nuclear transfer has been introduced to construct human somatic cell cloned embryo...Therapeutic cloning,which is based on human somatic cell nuclear transfer,is one of our major research objectives.Though inter-species nuclear transfer has been introduced to construct human somatic cell cloned embryos,the effects of type,passage,and preparation method of donor cells on embryo development remain unclear.In our experiment,cloned embryos were reconstructed with different passage and preparation methods of ossocartilaginous cell,skin fibroblast,and cumulus cells.The cumulus cell embryos showed significantly higher development rates than the other two(P<0.05).The development rate of embryos reconstruct-ed with skin fibroblasts of different passage number and somatic cells of different chilling durations showed no significant difference.Also,fluorescence in situ hybridization(FISH)was conducted to detect nuclear derivation of the embryos.The result showed that the nuclei of the inter-species cloned embryo cells came from human.We conclude that(1)cloned embryos can be constructed through human-rabbit interspecies nuclear transfer;(2)different kinds of somatic cells result in different efficiency of nuclear transfer,while in vitro passage of the donor does not influence embryo development;(3)refrigeration is a convenient and efficient donor cell preparation method.Finally,it is feasible to detect DNA genotype through FISH.展开更多
Generating B cell-deficient mutant is the first step to produce human antibody repertoires in large animal models. In this study, we applied the clustered regularly interspaced short palindromic repeat (CRISPR)/CRIS...Generating B cell-deficient mutant is the first step to produce human antibody repertoires in large animal models. In this study, we applied the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system to target the JH region of the pig IgM heavy chain gene which is crucial for B cell development and differentiation. Transfection of IgM-targeting Cas9 plasmid in primary porcine fetal fibroblasts (PFFs) enabled inducing gene knock out (KO) in up to 53.3% of colonies analyzed, a quarter of which harbored biallelic modification, which was much higher than that of the traditional homologous recombination (HR). With the aid of somatic cell nuclear transfer (SCNT) technology, three piglets with the biallelic lgM heavy chain gene mutation were produced. The piglets showed no antibody-producing B cells which indicated that the biallelic mutation of the lgM heavy chain gene effectively knocked out the function of the IgM and resulted in a B cell-deficient phenotype. Our study suggests that the CRISPR/Cas9 system combined with SCNT technology is an efficient genome-editing approach in pigs.展开更多
Reconstructed embryos derived from intersubspecies somatic cell nuclear transfer (SCNT) have poorer developmental potential than those from intrasubspecies SCNT. Based on our previous study that Holstein dairy bovi...Reconstructed embryos derived from intersubspecies somatic cell nuclear transfer (SCNT) have poorer developmental potential than those from intrasubspecies SCNT. Based on our previous study that Holstein dairy bovine (HD) mitochondrial DNA (mtDNA) haplotype compatibility between donor karyoplast and recipient cytoplast is crucial for SCNT embryo development, we performed intersubspecies SCNT using HD as donor karyoplast and Luxi yellow heifer (LY) as recipient cytoplast according to mtDNA haplotypes determined by polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) analysis. The results demonstrated that intersubspecies mtDNA homotype SCNT embryos had higher pre- and post-implantation developmental competence than intrasubspecies mtDNA heterotype embryos as well as improved blastocyst reprogramming status, including normal H3K9 dimethylation pattern and promoter hypomethylation of pluripotent genes such as Oct4 and Sox2, suggesting that intersubspecies SCNT using LY oocytes maintains HD cloning efficiency and may reprogram HD nuclei to develop into a normal cloned animal ultimately. Our results indicated that karyoplast-cytoplast interactions and mtDNA haplotype compatibility may affect bovine intersubspecies SCNT efficiency. This study on bovine intersubspecies SCNT is valuable for understanding the mechanisms of mtDNA haplotype compatibility between karyoplast and cytoplast impacting the bovine SCNT efficiency, and provides an alternative and economic resource for HD cloning.展开更多
The myxovirus resistance gene (Mx1) has a broad spectrum of antiviral activities. It is therefore an interestingcandidate gene to improve disease resistance in farm animals. In this study, we report the use of somatic...The myxovirus resistance gene (Mx1) has a broad spectrum of antiviral activities. It is therefore an interestingcandidate gene to improve disease resistance in farm animals. In this study, we report the use of somatic cellnuclear transfer (SCNT) to produce transgenic pigs over-expressing the Mx1 gene. These transgenic pigs expressapproximately 15–25 times more Mx1 mRNA than non-transgenic pigs, and the protein level of Mx1 was alsomarkedly enhanced. We challenged fibroblast cells isolated from the ear skin of transgenic and control pigs withinfluenza A virus and classical swine fever virus (CFSV). Indirect immunofluorescence assay (IFA) revealed a profounddecrease of influenza A proliferation in Mx1 transgenic cells. Growth kinetics showed an approximately 10-foldreduction of viral copies in the transgenic cells compared to non-transgenic controls. Additionally, we found thatthe Mx1 transgenic cells were more resistant to CSFV infection in comparison to non-transgenic cells. These resultsdemonstrate that the Mx1 transgene can protect against viral infection in cells of transgenic pigs and indicate thatthe Mx1 transgene can be harnessed to develop disease-resistant pigs.展开更多
Since the birth of the first cloned sheep,somatic cell nuclear transfer technology has been successfully used to clone a variety of mammals.Cloned livestock have no apparent health risks,and the quality and safety of ...Since the birth of the first cloned sheep,somatic cell nuclear transfer technology has been successfully used to clone a variety of mammals.Cloned livestock have no apparent health risks,and the quality and safety of the cloned animal products are similar to non-cloned animals.The social behavior and environmental adaptability of postnatal cloned animals,especially when used for grassland farm production purposes,is unknown.In the present study,the cloned Dorper sheep equipped with GPS location devices were free-grazed in a harsh natural environment similar to conditions commonly experienced by Mongolian sheep.The main findings of this research were as follows.(1)Under free-grazing conditions,the cloned sheep showed excellent climatic and ecological adaptability.In extreme temperature conditions ranging from–30 to 40°C,the cloned sheep maintained acceptable body condition and behaved as other sheep.(2)The cloned sheep quickly adapted from a herd feeding strategy to the harsh environment and quickly exhibited a grazing regimen as other free-grazing sheep.(3)The cloned sheep exhibited free-grazing patterns and social behavior as other sheep.(4)The cloned sheep in the harsh environment thrived and produced healthy lambs.Overall,the cloned Dorper sheep exhibited excellent ecological adaptation,which is an important consideration for breeding meat sheep by cloning.The Dorper sheep readily adapted to the free-grazing conditions on the Mongolian plateau grassland,which attests to their ability to withstand harsh environmental conditions.展开更多
Female infertility represents a major challenge for improving the production ef?ciency in the dairy industry. Historically, fertility has declined whereas milk yield has increased tremendously due to intensive genetic...Female infertility represents a major challenge for improving the production ef?ciency in the dairy industry. Historically, fertility has declined whereas milk yield has increased tremendously due to intensive genetic selection. In vivo evidence reveals about 60% pregnancy loss takes place during the ?rst month following fertilization. Meanwhile, early embryo development is signi?cant for somatic cell nuclear transfer in cattle as a large proportion of cloned embryos fail to develop beyond periimplantation stage. Oocyte quality is of utmost importance for the early embryo to develop to term for both fertilized and cloned embryos. Epigenetic reprogramming is a key process occurring after fertilization and critical roles of epigenetic modi?ers during preimplantation development are now clear. Incomplete epigenetic reprogramming is believed to be a major limitation to cloning ef?ciency.Treatment of cloned embryos with epigenetic modifying drugs(e.g., Trichostatin A) could greatly improve cloning ef?ciency in both mice and cattle. Recently, the rapid progress in high-throughput sequencing technologies has enabled detailed deciphering of the molecular mechanisms underlying these events. The robust ef?ciency of genomic editing tools also presents an alternative approach to the functional annotation of genes critical to early development.展开更多
基金Key Research and Development Project of Hainan Province(ZDYF2021XDNY174)Science and Technology Major Project of Inner Mongolia(2021ZD0023–1)National Transgenic Key Project of the Ministry of Agriculture of China(2018ZX0800801B)。
文摘Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods.This indicates the potential epigenetic variations between them.DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences.In this study,ASMT(acetylserotonin-Omethyltransferase)ovarian overexpression transgenic goat was produced by using SCNT.To investigate whether there are epigenetic differences between cloned and WT(wild type)goats,WGBS(whole-genome bisulfite sequencing)was used to measure the whole-genome methylation of these animals.Results:It is observed that the different m Cp G sites are mainly present in the intergenic and intronic regions between cloned and WT animals,and their CG-type methylation sites are strongly correlated.DMR(differentially methylated region)lengths are located around 1000 bp,mainly distributed in the exonic,intergenic and intronic functional domains.A total of 56 and 36 DMGs(differentially methylated genes)were identified by GO and KEGG databases,respectively.Functional annotation showed that DMGs were enriched in biological-process,cellularcomponent,molecular-function and other signaling pathways.A total of 10 identical genes related to growth and development were identified in GO and KEGG databases.Conclusion:The differences in methylation genes among the tested animals have been identified.A total of 10 DMGs associated with growth and development were identified between cloned and WT animals.The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT.These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology,particularly in goats.
文摘The current study was undertaken to evaluate the possibility of producing a human pro-insulin transgenic cow by means of somatic cell nuclear transfer (SCNT). A double selection system, Neomycin resistance (Neo^r) gene and enhanced green fluorescent protein (EGFP) gene linked through an inner ribosomal entry site (IRES) sequence directed by a Cytomegalovirus (CMV) promoter, was used for enrichment and selection of the transgenic cells and preimplantation embryos. Transgenes were introduced into bovine fetal fibroblast cells (BFF) cultured in vitro through electroporation (900 V/cm, 5 ms). Transgenic bovine fibroblast cells (TBF) were enriched through addition of G418 in culture medium (800 μg/mL). Before being used as a nuclear donor, the TBF cells were either cultured in normal conditions (10% FBS) or treated with serum starvation (0.5% FBS for 2-4 days) followed by 10 hours recovery for G1 phase synchronization. Transgenic cloned embryos were produced through GFP-expressing cell selection and SCNT. The results were the percentage of blastocyst development following SCNT was lower using TBF than BFF cells (23.2% VS 35.2%, P 〈 0.05). No difference in the percentage of cloned blastocysts between the two groups of transgenic nuclear donor of normal and starvation cultures were observed (23.2% VS 18.9%, P 〉 0.05). Two to four GFP-expressing blastocysts were transferred into the uterus of each synchronised recipient. One pregnancy from of seven recipients (21 embryos) was confirmed by rectum palpation 60 days after embryo transfer and one recipient has given birth to a calf at term. PCR and DNA sequencing analysis confirmed that the calf was produced using human proinsulin transgenic animal.
基金Project (No. R-174-000-065-112/303) supported by the NationalUniversity of Singapore
文摘This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.
基金supported by grants from the Major State Basic Research Development Program of China(No.001CB5099)the National High Technology Research and Development Program of China(No.2001AA216121)+3 种基金National Natural Science Foundation of China(No.30040003)Projects of Shanghai Science&Technology Development Foundation(No.99DJ14002,00DJ14033,01DJ14003)the Chinese Academy of Sciences(No.KSCX-2-3-08)Shanghai Municipal Education Commission and by Shanghai Second Medical University
文摘To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and 60 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of the donor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PCR and immunocytochemistry with probes that distinguish between the various species. The ntES cells maintain the capability of sustained growth in an undifferentiated state, and form embryoid bodies, which, on further induction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that express markers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NT to rabbit eggs retain phenotypes similar to those of conventional human ES cells, including the ability to undergo multilineage cellular differentiation.
文摘Atherosclerotic cardiovascular disease is the leading cause of death in the world which is resulted from complex interactions among multiple genetic and environmental factors (WHO). Athero- sclerosis is a chronic inflammatory disease characterized by accumulation of lipids in the arterial wall (Gofman and Lindgren, 1950). Tremendous clinical and experimental efforts have been made to reveal the pathogenesis of the disease. Nevertheless, the mechanism of atherosclerosis is still unclear. A suitable animal model to study metabolic disorders and subsequent atherosclerosis is a necessity. The traditional method by feeding high fat diet to establish animal models of atherosclerosis disease is time- consuming and laborious, and in many circumstances, the pheno- types are not consistent among the individual models.
基金supported by Grants from Special Fund for Excellent Young University teachers in Shanghai 2012Shanghai Science and Technology Developmental Foundations (Grant number: 09ZR1419000)
文摘Objective To analyze the blastocyst formation and chromosome statuses of reconstructed embryos derived from human-goat interspecies somatic cell nuclear transfer (iSCNT), exploring the development retardant factors. Methods Human specific point probes cep2, cep6, tel2 and 13q14.2, 21q22.13 combining fluorescence in-situ hybridization (FISH) technology were used to test trophectoderm cells of blastocyst and blastomeres of development arrest nuclear transfer (NT) embryos. Results A total of 209 reconstructed embryos were recovered, and the rate of blastocyst formation was 3.8% (8/209). FISH signals showed that chromosomal abnormalities were present in 2 blastocysts (2/8) and 146 development arrest embryos (146/201). Conclusion The rate of blastocyst formation is low, and reconstituted embryos of development arrest showed extensive chromosome abnormalities, suggesting that a chromosomal mechanism may underlie their developmental arrest.
基金Supported by the National Projects of Genetic Modified Organism Breeding Technology (2008ZX08006-002)the State Transgenic Research Programme of China (2008ZX08006-002)
文摘PiggyBac transposon has demonstrated its long-term and stable transposition on genomes of various species but lacking of the evidence on farm animal genomes. In this study, we constructed a piggyBac transposon marked with enhanced green fluorescent protein (eGFP) and showed efficient transposition in porcine somatic cells and cloned embryos. Our results demonstrated that piggyBac transposase could efficiently catalyze transposition in porcine fetal fibroblast cells, as well as in embryos. PiggyBac transposition generated 18-fold more eGFP-positive cell colonies compared to pEGFP-C1 random insertion mutagenesis, but excessive transposase might affect the transfection rate. Also piggyBac mediated 4-fold more eGFP expression than random insertion in cells and 17-fold in cloned embryos at mRNA level. When the mutagenized cells were used for somatic cell nuclear transfer (SCNT), the cleavage rate and blastocyst rate of constructed embryos harboring piggyBac transposition had no difference with random insertion group. This study provides key information on the piggyBac transposon system as a tool for creating transgenic pigs.
基金the National Basic Re-search Program of China (973 Program) (No. 2006CB504004 and 2006CB944004)the National Natural Science Foundation of China (No. 30430530)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-YW-N-017).
文摘High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning. It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation. DNA methylation is established and maintained by DNA methyltransferases (DNMTs), therefore, it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs. Since DNA methylation can strongly inhibit gene expression, aberrant DNA methylation of DNMT genes may disturb gene expression. But presently, it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos. In our study, we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a, Dnmt3b, Dnmtl and Dnmt2 in four aborted bovine clones. Using bisulfite sequencing method, we found that 3 out of 4 aborted bovine clones (AF1, AF2 and AF3) showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b, indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed. However, the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF) fetuses. Besides, we found that the 5' regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults, IVF fetuses, sperm and aborted clones. Together, our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.
基金supported by NIH/NINDS R01-NS043246,P30-NS045758the International Spinal Research Trust(STR-100)the Ohio State University College of Medicine
文摘Stem cells have the remarkable potential to develop into many different cell types, essentially with- out limit to replenish other cells as long as the person or animal is still alive, offering immense hope of curing Alzheimer's disease, repairing damaged spinal cords, treating kidney, liver and lung diseases and making damaged hearts whole. Until recently, scientists primarily worked with two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic "somatic" or "adult" stem cells. Recent breakthrough make it possible to convert or "reprogram" specialized adult cells to assume a stem stem-like cells with different technologies. The review will briefly dis- cuss the recent progresses in this area.
基金Supported by The United States-Israel Binational Science Foundationthe Israel Science Foundation administered by the Israel Academy of Science and Humanities,in partIsakov N holds the Joseph H Krupp Chair in Cancer Immunobiology
文摘The 2012 Nobel Prize in Physiology or Medicine was awarded jointly to Sir John B Gurdon and Shinya Ya-manaka “for the discovery that mature cells can be re-programmed to become pluripotent”. Professor John B Gordon who pioneered the feld of somatic cell nuclear transfer was the frst to show that a nucleus of a ma-ture cell can be transplanted into an enucleated egg and give rise to a living organism. His pioneering “clon-ing” technique paved the way for genome reprogram-ming and has led to subsequent cloning of differentani-mal species. Professor Shinya Yamanaka revolutionized the fled of stem cell production by showing that the introduction of four selected genes into cells transform them into induced pluripotent stem cells that resemble embryonic stem cells and serve as promising cells for future regenerative medicine.
文摘Handmade cloning (HMC) is the most awaited, simple and micromanipulator-ffee version of somatic cell nuclear transfer (SCNT). The requirement of expensive micromanipulators and skilled expertise is eliminated in this technique, proving it as a major revolution in the field of embryology. During the past years, many modifications have been incorporated in this technique to boost its efficiency. This alternative approach to micromanipulator based traditional cloning O-C) works wonder in generating comparable or even higher birth rates in addition to declining costs drastically and enabling cryopreservation. This technique is not only applicable to intraspecies nuclear transfer but also to interspecies nuclear transfer (iSCNT) thus permitting conservation of endangered species. It also offers unique possibilities for automation of SCNT which aims at production of transgenic animals that can cure certain human diseases by producing therapeutics hence, providing a healthier future for the wellbeing of humans. The present review aims at highlighting certain aspects of HMC including recent advancements in procedure and factors involved in elevating its efficiency besides covering the potentials and pitfalls of this technique
文摘Therapeutic cloning,which is based on human somatic cell nuclear transfer,is one of our major research objectives.Though inter-species nuclear transfer has been introduced to construct human somatic cell cloned embryos,the effects of type,passage,and preparation method of donor cells on embryo development remain unclear.In our experiment,cloned embryos were reconstructed with different passage and preparation methods of ossocartilaginous cell,skin fibroblast,and cumulus cells.The cumulus cell embryos showed significantly higher development rates than the other two(P<0.05).The development rate of embryos reconstruct-ed with skin fibroblasts of different passage number and somatic cells of different chilling durations showed no significant difference.Also,fluorescence in situ hybridization(FISH)was conducted to detect nuclear derivation of the embryos.The result showed that the nuclei of the inter-species cloned embryo cells came from human.We conclude that(1)cloned embryos can be constructed through human-rabbit interspecies nuclear transfer;(2)different kinds of somatic cells result in different efficiency of nuclear transfer,while in vitro passage of the donor does not influence embryo development;(3)refrigeration is a convenient and efficient donor cell preparation method.Finally,it is feasible to detect DNA genotype through FISH.
基金supported by a grant from the Jiangsu Key Laboratory of Xenotransplantation (BM2012116)
文摘Generating B cell-deficient mutant is the first step to produce human antibody repertoires in large animal models. In this study, we applied the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system to target the JH region of the pig IgM heavy chain gene which is crucial for B cell development and differentiation. Transfection of IgM-targeting Cas9 plasmid in primary porcine fetal fibroblasts (PFFs) enabled inducing gene knock out (KO) in up to 53.3% of colonies analyzed, a quarter of which harbored biallelic modification, which was much higher than that of the traditional homologous recombination (HR). With the aid of somatic cell nuclear transfer (SCNT) technology, three piglets with the biallelic lgM heavy chain gene mutation were produced. The piglets showed no antibody-producing B cells which indicated that the biallelic mutation of the lgM heavy chain gene effectively knocked out the function of the IgM and resulted in a B cell-deficient phenotype. Our study suggests that the CRISPR/Cas9 system combined with SCNT technology is an efficient genome-editing approach in pigs.
基金This work was supported by the grants from the National High-Tech R&D Program of China(No.2007AA100502)the National Science and Technology Major Project of China (No.2008ZX08007-004)the National Natural Science Foundation of China(No.30770242)
文摘Reconstructed embryos derived from intersubspecies somatic cell nuclear transfer (SCNT) have poorer developmental potential than those from intrasubspecies SCNT. Based on our previous study that Holstein dairy bovine (HD) mitochondrial DNA (mtDNA) haplotype compatibility between donor karyoplast and recipient cytoplast is crucial for SCNT embryo development, we performed intersubspecies SCNT using HD as donor karyoplast and Luxi yellow heifer (LY) as recipient cytoplast according to mtDNA haplotypes determined by polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) analysis. The results demonstrated that intersubspecies mtDNA homotype SCNT embryos had higher pre- and post-implantation developmental competence than intrasubspecies mtDNA heterotype embryos as well as improved blastocyst reprogramming status, including normal H3K9 dimethylation pattern and promoter hypomethylation of pluripotent genes such as Oct4 and Sox2, suggesting that intersubspecies SCNT using LY oocytes maintains HD cloning efficiency and may reprogram HD nuclei to develop into a normal cloned animal ultimately. Our results indicated that karyoplast-cytoplast interactions and mtDNA haplotype compatibility may affect bovine intersubspecies SCNT efficiency. This study on bovine intersubspecies SCNT is valuable for understanding the mechanisms of mtDNA haplotype compatibility between karyoplast and cytoplast impacting the bovine SCNT efficiency, and provides an alternative and economic resource for HD cloning.
基金This work was supported by grants from National Basic Research Program of China(973 program)(2011CB944203)ZNGI-2011-010 from the Guangzhou Municipality and the Chinese Academy and Sciences to L.L.
文摘The myxovirus resistance gene (Mx1) has a broad spectrum of antiviral activities. It is therefore an interestingcandidate gene to improve disease resistance in farm animals. In this study, we report the use of somatic cellnuclear transfer (SCNT) to produce transgenic pigs over-expressing the Mx1 gene. These transgenic pigs expressapproximately 15–25 times more Mx1 mRNA than non-transgenic pigs, and the protein level of Mx1 was alsomarkedly enhanced. We challenged fibroblast cells isolated from the ear skin of transgenic and control pigs withinfluenza A virus and classical swine fever virus (CFSV). Indirect immunofluorescence assay (IFA) revealed a profounddecrease of influenza A proliferation in Mx1 transgenic cells. Growth kinetics showed an approximately 10-foldreduction of viral copies in the transgenic cells compared to non-transgenic controls. Additionally, we found thatthe Mx1 transgenic cells were more resistant to CSFV infection in comparison to non-transgenic cells. These resultsdemonstrate that the Mx1 transgene can protect against viral infection in cells of transgenic pigs and indicate thatthe Mx1 transgene can be harnessed to develop disease-resistant pigs.
基金This study was supported by the Basic Research Program of China(2012CB22306)the Integration and Application of Grassland Ecological Animal Husbandry Program of Inner Mongolia.
文摘Since the birth of the first cloned sheep,somatic cell nuclear transfer technology has been successfully used to clone a variety of mammals.Cloned livestock have no apparent health risks,and the quality and safety of the cloned animal products are similar to non-cloned animals.The social behavior and environmental adaptability of postnatal cloned animals,especially when used for grassland farm production purposes,is unknown.In the present study,the cloned Dorper sheep equipped with GPS location devices were free-grazed in a harsh natural environment similar to conditions commonly experienced by Mongolian sheep.The main findings of this research were as follows.(1)Under free-grazing conditions,the cloned sheep showed excellent climatic and ecological adaptability.In extreme temperature conditions ranging from–30 to 40°C,the cloned sheep maintained acceptable body condition and behaved as other sheep.(2)The cloned sheep quickly adapted from a herd feeding strategy to the harsh environment and quickly exhibited a grazing regimen as other free-grazing sheep.(3)The cloned sheep exhibited free-grazing patterns and social behavior as other sheep.(4)The cloned sheep in the harsh environment thrived and produced healthy lambs.Overall,the cloned Dorper sheep exhibited excellent ecological adaptation,which is an important consideration for breeding meat sheep by cloning.The Dorper sheep readily adapted to the free-grazing conditions on the Mongolian plateau grassland,which attests to their ability to withstand harsh environmental conditions.
基金funded by the National Natural Science Foundation of China(31672416)the Fundamental Research Funds for the Central Universitiesthe One Hundred Talents Program of Zhejiang University
文摘Female infertility represents a major challenge for improving the production ef?ciency in the dairy industry. Historically, fertility has declined whereas milk yield has increased tremendously due to intensive genetic selection. In vivo evidence reveals about 60% pregnancy loss takes place during the ?rst month following fertilization. Meanwhile, early embryo development is signi?cant for somatic cell nuclear transfer in cattle as a large proportion of cloned embryos fail to develop beyond periimplantation stage. Oocyte quality is of utmost importance for the early embryo to develop to term for both fertilized and cloned embryos. Epigenetic reprogramming is a key process occurring after fertilization and critical roles of epigenetic modi?ers during preimplantation development are now clear. Incomplete epigenetic reprogramming is believed to be a major limitation to cloning ef?ciency.Treatment of cloned embryos with epigenetic modifying drugs(e.g., Trichostatin A) could greatly improve cloning ef?ciency in both mice and cattle. Recently, the rapid progress in high-throughput sequencing technologies has enabled detailed deciphering of the molecular mechanisms underlying these events. The robust ef?ciency of genomic editing tools also presents an alternative approach to the functional annotation of genes critical to early development.