Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,20...Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).展开更多
The Dongchuang gold deposit in the Xiaoqinling area is an orogenic-type lodegold deposit. It is one of the few superlarge (>100 t Au) deposits in China. Although it has beenargued that it was formed in the Mesozoic...The Dongchuang gold deposit in the Xiaoqinling area is an orogenic-type lodegold deposit. It is one of the few superlarge (>100 t Au) deposits in China. Although it has beenargued that it was formed in the Mesozoic, related isotopic age data have not been reported inprevious studies. Based on detailed geological study, the authors have carried out isotopic datingon various metallogenic generations. The ore-forming process of the Dongchuang gold deposit consistsof four stages: coarse-grained pyrite-bearing quartz veins (stage I), fine-grained pyrite-quartzveinlets (stage II), multi-sulfides (stage III) and carbonate-quartz veinlets (stage IV). Ar-Ardating on mineral separates of stages I, II and III yields plateau ages of 142.9 +- 2.9 Ma, 132.2 +-2.6 Ma and 128.3 +- 6.2 Ma, respectively. Sericite separates from stage II assemblage also yield anAr-Ar isochron age of 132.6 +- 2.7 Ma, similar to the Ar-Ar plateau age. These results suggest thatthe Dongchuang gold deposit was mainly formed during 143-128 Ma, coinciding with the authors'geological observations and previous hypothesis. This ore formation is coeval with theregional-tectonic transition from collisional compression to extension, strongly showing that thedecompression-geothermal increase regime during compression-to-extension transition is the mostconducive geodynamic environment to orogenic-type gold mineralization.展开更多
In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infi...In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess,alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province,and the following results were obtained:(1)The source of Hg in subsurface flow zone is mainly caused by mineral processing activities;(2)the subsurface flow zone in the study area is in alkaline environment,and the residual state,iron and manganese oxidation state,strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment;mercury in river alluvial or diluvial strata is mainly concentrated in silt,tailings and clayey silt soil layer,and mercury has certain stability,and the form of mercury in loess is easier to transform than the other two media;(3)under the flooding condition,most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed,and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection;(4)infiltration at the flood level accelerates the migration of pollutants to the ground;(5)the soil in the undercurrent zone is overloaded and has seriously exceeded the standard.Although the groundwater monitoring results are safe this time,relevant enterprises or departments should continue to pay attention to improving the gold extraction process,especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes,and intensify efforts to solve the geological environmental problems of mines left over from history.At present,the occurrence form of mercury in the undercurrent zone is relatively stable,but the water and soil layers have been polluted.The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links.The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.展开更多
基金supported by Qinghai Provincial Association for Science and Technology Youth Science and Technology Talent Support Project(Grant No.2023QHSKXRCTJ47)Exploration Foundation of Qinghai Province(Grant No.2023085029ky004)。
文摘Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).
基金This study was financially supported by the National Sciencc Foundation of China(No.49972035).
文摘The Dongchuang gold deposit in the Xiaoqinling area is an orogenic-type lodegold deposit. It is one of the few superlarge (>100 t Au) deposits in China. Although it has beenargued that it was formed in the Mesozoic, related isotopic age data have not been reported inprevious studies. Based on detailed geological study, the authors have carried out isotopic datingon various metallogenic generations. The ore-forming process of the Dongchuang gold deposit consistsof four stages: coarse-grained pyrite-bearing quartz veins (stage I), fine-grained pyrite-quartzveinlets (stage II), multi-sulfides (stage III) and carbonate-quartz veinlets (stage IV). Ar-Ardating on mineral separates of stages I, II and III yields plateau ages of 142.9 +- 2.9 Ma, 132.2 +-2.6 Ma and 128.3 +- 6.2 Ma, respectively. Sericite separates from stage II assemblage also yield anAr-Ar isochron age of 132.6 +- 2.7 Ma, similar to the Ar-Ar plateau age. These results suggest thatthe Dongchuang gold deposit was mainly formed during 143-128 Ma, coinciding with the authors'geological observations and previous hypothesis. This ore formation is coeval with theregional-tectonic transition from collisional compression to extension, strongly showing that thedecompression-geothermal increase regime during compression-to-extension transition is the mostconducive geodynamic environment to orogenic-type gold mineralization.
基金This study was funded by the survey projects initiated by the Ministry of Natural Resources of the People’s Republic of China(1212010741003,1212011220224,and 121201011000150022)China Geological Survey(DD20189220,DD20211317)+2 种基金the public welfare scientific research project launched by the Ministry of Natural Resources of the People’s Republic of China(201111020)the project of 2015 Natural Science Basic Research Plan of Shaanxi Province of China(2015JM4129)the project of 2016 Fundamental Research Funds for the Central Universities of China(an open-end fund)(310829161128).
文摘In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess,alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province,and the following results were obtained:(1)The source of Hg in subsurface flow zone is mainly caused by mineral processing activities;(2)the subsurface flow zone in the study area is in alkaline environment,and the residual state,iron and manganese oxidation state,strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment;mercury in river alluvial or diluvial strata is mainly concentrated in silt,tailings and clayey silt soil layer,and mercury has certain stability,and the form of mercury in loess is easier to transform than the other two media;(3)under the flooding condition,most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed,and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection;(4)infiltration at the flood level accelerates the migration of pollutants to the ground;(5)the soil in the undercurrent zone is overloaded and has seriously exceeded the standard.Although the groundwater monitoring results are safe this time,relevant enterprises or departments should continue to pay attention to improving the gold extraction process,especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes,and intensify efforts to solve the geological environmental problems of mines left over from history.At present,the occurrence form of mercury in the undercurrent zone is relatively stable,but the water and soil layers have been polluted.The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links.The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.