With the objective to investigate the structure-reactivity relationship of CuO/SnO2 and eventually design more applicable catalysts for soot combustion,catalysts with different CuO loadings have been prepared by impre...With the objective to investigate the structure-reactivity relationship of CuO/SnO2 and eventually design more applicable catalysts for soot combustion,catalysts with different CuO loadings have been prepared by impregnation method.By using X-ray diffraction and X-ray photoelectron spectroscopy extrapolation methods,it is disclosed that CuO disperses finely on the SnO2 support to form a monolayer with a capacity of 2.09 mmol 100 m^-2,which equals 4.8 wt%CuO loading.When the CuO loading is below the capacity,it is in a sub-monolayer state.However,when the loading is above the capacity,CuO micro-crystallites will be formed that coexist with the CuO monolayer.The soot combustion activity of the catalyst increases with the CuO loading until it reaches the monolayer dispersion capacity.A further increase in the CuO loading has no evident influence on the activity.Raman results have testified that with the addition of CuO onto the SnO2 support,a surface-active oxygen species can be formed,the amount of which also increases significantly with the increase in the CuO loading until it reaches the monolayer dispersion capacity.Increasing the CuO loading further has no evident impact on the amount of surface oxygen.Therefore,an apparent monolayer dispersion threshold effect is observed for soot combustion over CuO/SnO2 catalysts.It is concluded that the amount of surface-active oxygen sites is the major factor determining the activity of the catalyst.展开更多
基金supported by the National Natural Science Foundation of China(21567016,21666020)the Natural Science Foundation of Jiangxi Province(20181ACB20005,20171BAB213013,20181BCD40004,20181BAB203017)+2 种基金the Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2018-B015)the Education Department Foundation of Jiangxi Province(KJLD14005)the Opening Fund of Key Laboratory of Process Analysis and Control of Sichuan Universities(2017002)~~
文摘With the objective to investigate the structure-reactivity relationship of CuO/SnO2 and eventually design more applicable catalysts for soot combustion,catalysts with different CuO loadings have been prepared by impregnation method.By using X-ray diffraction and X-ray photoelectron spectroscopy extrapolation methods,it is disclosed that CuO disperses finely on the SnO2 support to form a monolayer with a capacity of 2.09 mmol 100 m^-2,which equals 4.8 wt%CuO loading.When the CuO loading is below the capacity,it is in a sub-monolayer state.However,when the loading is above the capacity,CuO micro-crystallites will be formed that coexist with the CuO monolayer.The soot combustion activity of the catalyst increases with the CuO loading until it reaches the monolayer dispersion capacity.A further increase in the CuO loading has no evident influence on the activity.Raman results have testified that with the addition of CuO onto the SnO2 support,a surface-active oxygen species can be formed,the amount of which also increases significantly with the increase in the CuO loading until it reaches the monolayer dispersion capacity.Increasing the CuO loading further has no evident impact on the amount of surface oxygen.Therefore,an apparent monolayer dispersion threshold effect is observed for soot combustion over CuO/SnO2 catalysts.It is concluded that the amount of surface-active oxygen sites is the major factor determining the activity of the catalyst.