A joint consideration of potential combustion and emission performance in spark-ignition engines is essential for designing gasoline fuel replacements and additives,for which the knowledge of the fuels’characteristic...A joint consideration of potential combustion and emission performance in spark-ignition engines is essential for designing gasoline fuel replacements and additives,for which the knowledge of the fuels’characteristic properties forms the backbone.The aim of this study is to predict sooting tendency of fuel molecules for spark-ignition engine applications in terms of their yield sooting indexes(YSI).In conjunction with our previously developed database for gasoline compounds,which includes the physical and chemical properties,such as octane numbers,laminar burning velocity,and heat of vaporization,for more than 600 species,the identification of fuel replacements and additives can thus be performed jointly with respect to both their potential thermal efficiency benefits and emission formation characteristics in spark-ignition engines.For this purpose,a quantitative structure-property relationship(QSPR)model is developed to predict the YSI of fuel species by using artificial neural network(ANN)techniques with 21 well-selected functional group descriptors as input features.The model is trained and cross-validated with the YSI database reported by Yale University.It is then applied to estimate the YSI values of fuels available in the database for gasoline compounds and to explore the sensitivity of fuel’s sooting tendency on molecular groups.In addition,the correlation of YSI values with other properties available in the gasoline fuel database is examined to gain insights into the dependence of these properties.Finally,a selection of potential gasoline blending components is carried out exemplarily,by taking the fuels’potential benefits in thermal engine efficiency and their soot formation characteristics jointly into account in terms of efficiency merit function and YSI,respectively.展开更多
An integrated and systematic database of sooting tendency with more than 190 kinds of fuels was obtained through a series of experimental investigations. The laser-induced incandescence (LII) method was used to acquir...An integrated and systematic database of sooting tendency with more than 190 kinds of fuels was obtained through a series of experimental investigations. The laser-induced incandescence (LII) method was used to acquire the 2D distribution of soot volume fraction, and an apparatus-independent yield sooting index (YSI) was experimentally obtained. Based on the database, a novel predicting model of YSI values for surrogate fuels was proposed with the application of a machine learning method, named the Bayesian multiple kernel learning (BMKL) model. A high correlation coefficient (0.986) between measured YSIs and predicted values with the BMKL model was obtained, indicating that the BMKL model had a reliable and accurate predictive capacity for YSI values of surrogate fuels. The BMKL model provides an accurate and low-cost approach to assess surrogate performances of diesel, jet fuel, and biodiesel in terms of sooting tendency. Particularly, this model is one of the first attempts to predict the sooting tendencies of surrogate fuels that concurrently contain hydrocarbon and oxygenated components and shows a satisfying matching level. During surrogate formulation, the BMKL model can be used to shrink the surrogate candidate list in terms of sooting tendency and ensure the optimal surrogate has a satisfying matching level of soot behaviors. Due to the high accuracy and resolution of YSI prediction, the BMKL model is also capable of providing distinguishing information of sooting tendency for surrogate design.展开更多
The pursuit of high-performance is worth considerable effort in catalysis for energy efficiency and environmental sustainability. To develop redox catalysts with superior performance for soot combustion, a series of M...The pursuit of high-performance is worth considerable effort in catalysis for energy efficiency and environmental sustainability. To develop redox catalysts with superior performance for soot combustion, a series of Mn_(x)Co_(y) oxides were synthesized using MgO template substitution.This method greatly improves the preparation and catalytic efficiency and is more in line with the current theme of green catalysts and sustainable development. The resulting Mn_(1)Co_(2.3) has a strong activation capability of gaseous oxygen due to a high concentration of Co^(3+) and Mn^(3+). The Mn doping enhanced the intrinsic activity by prompting oxygen vacancy formation and gaseous oxygen adsorption. The nanosheet morphology with abundant mesoporous significantly increased the solid–solid contact efficiency and improved the adsorption capability of gaseous reactants. The novel design of Mn_(1)Co_(2.3)oxide enhanced its catalytic performance through a synergistic effect of Mn doping and the porous nanosheet morphology, showing significant potential for the preparation of high-performance soot combustion catalysts.展开更多
A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relative...A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relatively high local temperatures,potentially resulting in damage to the carrier;On the other hand,the internal temperature field can also undergo significant changes contributing to increase this risk.This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle(DTI)condition by means of bench tests.It is shown that the considered silicon carbide carrier exhibits good flow uniformity,with a temperature deviation of no more than 2%with respect to the same radius measurement point at the outlet during the regeneration stage.In the DTI test,the temperature is relatively high within r/2 near the outlet end,where the maximum temperature peak occurs,and the maximum radial temperature gradient is located between r/2 and the edge.Both these quantities grow as the soot load increases,thereby making the risk of carrier burnout greater.Finally,it is shown that the soot load limit of the silicon carbide DPF can be extended to 11 g/L,which reduces the frequency of active regeneration by approximately 40%compared to a cordierite DPF.展开更多
The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were coll...The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.展开更多
The evolution of particle size distribution function(PSDF)of soot in premixed flames of benzene and toluene was studied on a burner stabilized stagnation(BSS)flame platform.The cold gas velocities were changed to hold...The evolution of particle size distribution function(PSDF)of soot in premixed flames of benzene and toluene was studied on a burner stabilized stagnation(BSS)flame platform.The cold gas velocities were changed to hold the maximum flame temperatures of different flames approximately constant.The PSDFs of all the test flames exhibited a bimodal distribution,i.e.,a small-size nucleation mode and a large-size accumulation mode.It was observed that soot nucleation and particle growth in the benzene flame were stronger than those in the toluene flame at short residence times.At longer residence times,the PSDFs of the two flames were similar,and the toluene flame showed a larger particle size distribution range and a higher particle volume fraction than the benzene flame.展开更多
This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistr...This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistry schemes on soot formation and destruction in turbulent non-premixed flames. A two-equation soot model repre- senting soot particle nucleation, growth, coagulation and oxidation, was incorporated into the CMC model. The turbulent flow-field of both flames is described using the Favre-averaged fluid-flow equations, applying a stan- dard k-c turbulence model. A number of five reaction kinetic mechanisms having 50 - 100 species and 200 - 1000 elementary reactions called ABF, Miller-Bowman, GRI-Mech3.0, Warnatz, and Qin were employed to study the effect of combustion chemistry schemes on soot predictions. The results showed that of various kinetic schemes being studied, each yields similar accuracy in temperature prediction when compared with experimental data. With respect to soot prediction, the kinetic scheme containing benzene elementary reactions tends to result in a better prediction on soot concentrations in comparison to those contain no benzene elementary reactions. Among five kinetic mechanisms being studied, the Qin combustion scheme mechanism turned to yield the best prediction on both flame temperature and soot levels.展开更多
This paper presents the study of polycyclic aromatic hydrocarbons (PAH) and paramagnetism of soot particles sampled from cool sooting flames of methane and propane in a separately-heated two-sectional reactor under at...This paper presents the study of polycyclic aromatic hydrocarbons (PAH) and paramagnetism of soot particles sampled from cool sooting flames of methane and propane in a separately-heated two-sectional reactor under atmospheric pressure at the reactor temperatures of 670-1170 K. The temperature profiles of the flames were studied. The sampling was carred out with a quarts sampler and the samples were frozen with liquid nitrogen. A number of polyaromatic hydrocarbons such as pyrene. fluoranthene, coronene, anthanthrene, 1,1 2-benzperylene, were identified by spectroscopic methods in the extract of soot. The processes of soot formation at methane- oxygen mixture combustion in the electric field with applied potential changed from 0 to 2,2 kV at different polarity of electrodes have been investigated. It has been stated that at the electrical field application, an increase in soot particle sizes and soot yield occurs; besides, at the application of the field, speeding up the positively charged particles, the interplanar distance decreases. On the basis of investigation of soot particles paramagnetism, it was shown that initially soot particles have high carcinogetic activity and pollute the environment owing to a rapid decrease of the number of these radical centers. The reduction of the radical concentration is connected with radical recombination on soot.展开更多
In this paper,the spray and combustion characteristics of diesel/butanol-blended fuels were studied within a high-temperature and high-pressure constant volume chamber equipped with a single-hole injector.Two blends w...In this paper,the spray and combustion characteristics of diesel/butanol-blended fuels were studied within a high-temperature and high-pressure constant volume chamber equipped with a single-hole injector.Two blends with 80%diesel/20%butanol and 60%diesel/40%butanol mixed by volume were tested in this study.The pure diesel B0 was also tested here as a reference.The spray penetration,flame lift-off length,and soot optical thickness were obtained through high-speed schlieren imaging,OH*chemiluminescence,and diffused back-illumination extinction imaging technique,respectively.The thermogravimetric curves of different fuels were obtained through a thermogravimetric analyzer.The results showed that butanol/diesel blends presented a longer ignition delay(ID)and flame lift-off length compared with pure diesel,and such finding was mainly caused by the lower cetane number and higher latent heat of vaporization of n-butanol.With the increase in the n-butanol ratio,soot production in the combustion process decreased significantly.Given the shorter ID period,the soot distribution of pure diesel reached a steady state earlier than the blends.展开更多
The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on ...The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on the performance of these substances during soot combustion were subsequently investigated.Under O_2,the 0.3Ag/Co_(0.93)Ce_(0.07) catalyst resulted in the lowest ignition temperature,T_(10),of197 ℃,while the minimum light-off temperature was obtained from both 0.2Ag/Co_(0.93)Ce_(0.07) and0.3Ag/Co_(0.93)Ce_(0.07) in the NO_x atmosphere.These materials were also characterized by various techniques,including H_2,soot and NO_x temperature programmed reduction,X-ray diffraction,and electron paramagnetic resonance,Raman,X-ray photoelectron,and Fourier transform infrared spectroscopic analyses.The results demonstrated that silver significantly alters the catalytic behavior under both O_2 and NO_x,even though the lattice structure of the mixed oxide is not affected.Surface silver oxides generated under the O_2 atmosphere favor soot combustion by participating in the redox cycles between soot and the silver oxide,whereas the AgNO_3 that forms in a NO_x-rich atmosphere facilitates soot abatement at a lower temperature.The inferior activity of AgNO_3 relative to that of Ag_2O results in the different catalytic performance in the presence of NO_x or O_2.展开更多
基金supported by the Fundamental Research Funds for the Central Universities。
文摘A joint consideration of potential combustion and emission performance in spark-ignition engines is essential for designing gasoline fuel replacements and additives,for which the knowledge of the fuels’characteristic properties forms the backbone.The aim of this study is to predict sooting tendency of fuel molecules for spark-ignition engine applications in terms of their yield sooting indexes(YSI).In conjunction with our previously developed database for gasoline compounds,which includes the physical and chemical properties,such as octane numbers,laminar burning velocity,and heat of vaporization,for more than 600 species,the identification of fuel replacements and additives can thus be performed jointly with respect to both their potential thermal efficiency benefits and emission formation characteristics in spark-ignition engines.For this purpose,a quantitative structure-property relationship(QSPR)model is developed to predict the YSI of fuel species by using artificial neural network(ANN)techniques with 21 well-selected functional group descriptors as input features.The model is trained and cross-validated with the YSI database reported by Yale University.It is then applied to estimate the YSI values of fuels available in the database for gasoline compounds and to explore the sensitivity of fuel’s sooting tendency on molecular groups.In addition,the correlation of YSI values with other properties available in the gasoline fuel database is examined to gain insights into the dependence of these properties.Finally,a selection of potential gasoline blending components is carried out exemplarily,by taking the fuels’potential benefits in thermal engine efficiency and their soot formation characteristics jointly into account in terms of efficiency merit function and YSI,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.52071216)the Shanghai Rising-Star Program.
文摘An integrated and systematic database of sooting tendency with more than 190 kinds of fuels was obtained through a series of experimental investigations. The laser-induced incandescence (LII) method was used to acquire the 2D distribution of soot volume fraction, and an apparatus-independent yield sooting index (YSI) was experimentally obtained. Based on the database, a novel predicting model of YSI values for surrogate fuels was proposed with the application of a machine learning method, named the Bayesian multiple kernel learning (BMKL) model. A high correlation coefficient (0.986) between measured YSIs and predicted values with the BMKL model was obtained, indicating that the BMKL model had a reliable and accurate predictive capacity for YSI values of surrogate fuels. The BMKL model provides an accurate and low-cost approach to assess surrogate performances of diesel, jet fuel, and biodiesel in terms of sooting tendency. Particularly, this model is one of the first attempts to predict the sooting tendencies of surrogate fuels that concurrently contain hydrocarbon and oxygenated components and shows a satisfying matching level. During surrogate formulation, the BMKL model can be used to shrink the surrogate candidate list in terms of sooting tendency and ensure the optimal surrogate has a satisfying matching level of soot behaviors. Due to the high accuracy and resolution of YSI prediction, the BMKL model is also capable of providing distinguishing information of sooting tendency for surrogate design.
基金supported by the top talent program of Henan Agricultural University[grant numbers 30501029].
文摘The pursuit of high-performance is worth considerable effort in catalysis for energy efficiency and environmental sustainability. To develop redox catalysts with superior performance for soot combustion, a series of Mn_(x)Co_(y) oxides were synthesized using MgO template substitution.This method greatly improves the preparation and catalytic efficiency and is more in line with the current theme of green catalysts and sustainable development. The resulting Mn_(1)Co_(2.3) has a strong activation capability of gaseous oxygen due to a high concentration of Co^(3+) and Mn^(3+). The Mn doping enhanced the intrinsic activity by prompting oxygen vacancy formation and gaseous oxygen adsorption. The nanosheet morphology with abundant mesoporous significantly increased the solid–solid contact efficiency and improved the adsorption capability of gaseous reactants. The novel design of Mn_(1)Co_(2.3)oxide enhanced its catalytic performance through a synergistic effect of Mn doping and the porous nanosheet morphology, showing significant potential for the preparation of high-performance soot combustion catalysts.
基金This work was supported by National Key R&D Program Project[Grant Number 2020YFB0106603]Provincial Major Scientific and Technological Innovation Project[Grant Number 2021CXGC010207-1]+2 种基金Shantui Engineering Machinery Intelligent Equipment Innovation and Entrepreneurship Community Innovation Project[Grant Number GTT2021105]Shandong Provincial Science and Technology SMEs Innovation Capacity Improvement Project[Grant Numbers 2021TSGC1334]Undergraduate School of Shandong University,China[Grant Number 2022Y155].
文摘A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relatively high local temperatures,potentially resulting in damage to the carrier;On the other hand,the internal temperature field can also undergo significant changes contributing to increase this risk.This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle(DTI)condition by means of bench tests.It is shown that the considered silicon carbide carrier exhibits good flow uniformity,with a temperature deviation of no more than 2%with respect to the same radius measurement point at the outlet during the regeneration stage.In the DTI test,the temperature is relatively high within r/2 near the outlet end,where the maximum temperature peak occurs,and the maximum radial temperature gradient is located between r/2 and the edge.Both these quantities grow as the soot load increases,thereby making the risk of carrier burnout greater.Finally,it is shown that the soot load limit of the silicon carbide DPF can be extended to 11 g/L,which reduces the frequency of active regeneration by approximately 40%compared to a cordierite DPF.
基金the SINOPEC(124015)and the State Key Laboratory of Engines at Tianjin University(No.K2022-06).
文摘The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.
基金supported by the National Natural Science Foundation of China(Grant No.51776124).
文摘The evolution of particle size distribution function(PSDF)of soot in premixed flames of benzene and toluene was studied on a burner stabilized stagnation(BSS)flame platform.The cold gas velocities were changed to hold the maximum flame temperatures of different flames approximately constant.The PSDFs of all the test flames exhibited a bimodal distribution,i.e.,a small-size nucleation mode and a large-size accumulation mode.It was observed that soot nucleation and particle growth in the benzene flame were stronger than those in the toluene flame at short residence times.At longer residence times,the PSDFs of the two flames were similar,and the toluene flame showed a larger particle size distribution range and a higher particle volume fraction than the benzene flame.
基金Supported by Ministry of National Education,Republic of Indonesia No.433/SP2H/PP/DP2M/VI/2010
文摘This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistry schemes on soot formation and destruction in turbulent non-premixed flames. A two-equation soot model repre- senting soot particle nucleation, growth, coagulation and oxidation, was incorporated into the CMC model. The turbulent flow-field of both flames is described using the Favre-averaged fluid-flow equations, applying a stan- dard k-c turbulence model. A number of five reaction kinetic mechanisms having 50 - 100 species and 200 - 1000 elementary reactions called ABF, Miller-Bowman, GRI-Mech3.0, Warnatz, and Qin were employed to study the effect of combustion chemistry schemes on soot predictions. The results showed that of various kinetic schemes being studied, each yields similar accuracy in temperature prediction when compared with experimental data. With respect to soot prediction, the kinetic scheme containing benzene elementary reactions tends to result in a better prediction on soot concentrations in comparison to those contain no benzene elementary reactions. Among five kinetic mechanisms being studied, the Qin combustion scheme mechanism turned to yield the best prediction on both flame temperature and soot levels.
文摘This paper presents the study of polycyclic aromatic hydrocarbons (PAH) and paramagnetism of soot particles sampled from cool sooting flames of methane and propane in a separately-heated two-sectional reactor under atmospheric pressure at the reactor temperatures of 670-1170 K. The temperature profiles of the flames were studied. The sampling was carred out with a quarts sampler and the samples were frozen with liquid nitrogen. A number of polyaromatic hydrocarbons such as pyrene. fluoranthene, coronene, anthanthrene, 1,1 2-benzperylene, were identified by spectroscopic methods in the extract of soot. The processes of soot formation at methane- oxygen mixture combustion in the electric field with applied potential changed from 0 to 2,2 kV at different polarity of electrodes have been investigated. It has been stated that at the electrical field application, an increase in soot particle sizes and soot yield occurs; besides, at the application of the field, speeding up the positively charged particles, the interplanar distance decreases. On the basis of investigation of soot particles paramagnetism, it was shown that initially soot particles have high carcinogetic activity and pollute the environment owing to a rapid decrease of the number of these radical centers. The reduction of the radical concentration is connected with radical recombination on soot.
基金Supported by the National Natural Science Foundation of China(Grant No.52276116)Shenzhen Basic Key Research Project(Grant No.JCYJ20200109115414354).
文摘In this paper,the spray and combustion characteristics of diesel/butanol-blended fuels were studied within a high-temperature and high-pressure constant volume chamber equipped with a single-hole injector.Two blends with 80%diesel/20%butanol and 60%diesel/40%butanol mixed by volume were tested in this study.The pure diesel B0 was also tested here as a reference.The spray penetration,flame lift-off length,and soot optical thickness were obtained through high-speed schlieren imaging,OH*chemiluminescence,and diffused back-illumination extinction imaging technique,respectively.The thermogravimetric curves of different fuels were obtained through a thermogravimetric analyzer.The results showed that butanol/diesel blends presented a longer ignition delay(ID)and flame lift-off length compared with pure diesel,and such finding was mainly caused by the lower cetane number and higher latent heat of vaporization of n-butanol.With the increase in the n-butanol ratio,soot production in the combustion process decreased significantly.Given the shorter ID period,the soot distribution of pure diesel reached a steady state earlier than the blends.
基金supported by the National Natural Science Foundation of China(21577088)~~
文摘The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on the performance of these substances during soot combustion were subsequently investigated.Under O_2,the 0.3Ag/Co_(0.93)Ce_(0.07) catalyst resulted in the lowest ignition temperature,T_(10),of197 ℃,while the minimum light-off temperature was obtained from both 0.2Ag/Co_(0.93)Ce_(0.07) and0.3Ag/Co_(0.93)Ce_(0.07) in the NO_x atmosphere.These materials were also characterized by various techniques,including H_2,soot and NO_x temperature programmed reduction,X-ray diffraction,and electron paramagnetic resonance,Raman,X-ray photoelectron,and Fourier transform infrared spectroscopic analyses.The results demonstrated that silver significantly alters the catalytic behavior under both O_2 and NO_x,even though the lattice structure of the mixed oxide is not affected.Surface silver oxides generated under the O_2 atmosphere favor soot combustion by participating in the redox cycles between soot and the silver oxide,whereas the AgNO_3 that forms in a NO_x-rich atmosphere facilitates soot abatement at a lower temperature.The inferior activity of AgNO_3 relative to that of Ag_2O results in the different catalytic performance in the presence of NO_x or O_2.