There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycl...There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycle them to manufacture new tires. In the present work, hydraulic concrete plates added with waste tire rubber were manufactured to modify their sound absorption capacity. It was found that the rubber additions produce changes in the density of the material and in the sound absorption capacity. When the material is exposed to high-frequency sounds that correspond to high-pitched sounds, its absorption capacity increases. On the contrary, when the test frequency is low, that is, bass sounds, the sound absorption capacity decreases. The results obtained in this work suggest that the proposed mixtures are suitable for the possible manufacture of acoustic insulating shields.展开更多
Accurate determination of the optical properties of biological tissues enables quantitative understanding of light propagation in these tissues for optical diagnosis and treatment applications.The absorption(μa)and s...Accurate determination of the optical properties of biological tissues enables quantitative understanding of light propagation in these tissues for optical diagnosis and treatment applications.The absorption(μa)and scattering(μs)coe±cients of biological tissues are inversely analyzed from their diffuse re°ectance(R)and total transmittance(T),which are measured using a double integrating spheres(DIS)system.The inversion algorithms,for example,inverse adding doubling method and inverse Monte Carlo method,are sensitive to noise signals during the DIS measurements,resulting in reduced accuracy during determination.In this study,we propose an arti ficial neural network(ANN)to estimateμa andμs at a target wavelength from the R and T spectra measured via the DIS to reduce noise in the optical properties.Approximate models of the optical properties and Monte Carlo calculations that simulated the DIS measurements were used to generate spectral datasets comprisingμa,μs,R and T.Measurement noise signals were added to R and T,and the ANN model was then trained using the noise-added datasets.Numerical results showed that the trained ANN model reduced the effects of noise inμa andμs estimation.Experimental veri fication indicated noise-reduced estimation from the R and T values measured by the DIS with a small number of scans on average,resulting in measurement time reduction.The results demonstrated the noise robustness of the proposed ANN-based method for optical properties determination and will contribute to shorter DIS measurement times,thus reducing changes in the optical properties due to desiccation of the samples.展开更多
The screw air-source heat pump can cause incessant high noise levels during operation,which might hinder adoption of this energy-efficient heat pump.First,acoustic measurements and comparison testing were performed in...The screw air-source heat pump can cause incessant high noise levels during operation,which might hinder adoption of this energy-efficient heat pump.First,acoustic measurements and comparison testing were performed in this research.The measurements revealed that the compressor is the main noise source of the heat pump,and it shows a multipeak frequency distribution and a wide frequency spectrum under different work conditions,with multiple peaks at 63,250,and 1000 Hz.Then,a compressor sound insulation cover with broadband absorption was proposed,and it was experimentally proven that the insulation cover can reduce the maximum sound pressure level of one unit from 89.8 dBA to 79.1 dBA.Third,we proposed several noise reduction strategies and compared their noise reduction effects using computer simulation.The results showed that the noise problem can be effectively improved through the rational design of the sound barrier and the layout and opening options of heat pump.The distance between the sound barrier and heat pump and the sound attenuation due to diffraction ALa exhibit a U-shaped relation.For buildings of different heights,the optimal heights of noise barrier are proposed.The 5.5-meter is the optimal height of the sound barrier for single-story buildings.The conclusions can be applied to other building projects for heat pump noise reduction.展开更多
Numerical studies were performed to investigate the mechanism and potential of several active rotors for reducing low-frequency in-plane thickness noise generated by rotating blades.A numerical method coupling the bla...Numerical studies were performed to investigate the mechanism and potential of several active rotors for reducing low-frequency in-plane thickness noise generated by rotating blades.A numerical method coupling the blade element theory,prescribed wake model and Fowcs Williams-Hawkings(FW-H)equation was established for rotor noise prediction.It is indicated that the excitation force on the blade tip can generate anti-noise that to partly cancel the in-plane thickness noise with an appropriate actuation law.Results from the phase,frequency and amplitude sweeps show that the excitation force direction and actuation law are the crucial factors affecting the noise reduction,which determine the noise reduction area in the elevation and azimuth directions,respectively.The active trailing-flap rotor can generate the in-plane excitation force,but because of large lift-drag ratio the anti-noise is mainly from the vertical lift,which is caused by flap deflection similar to a variable camber airfoil.For the harmonic control rotor and active twist rotor,the excitation force is also attributed to the vertical blade lift.The vertical force can reduce the noise near the rotor plane,it will also cause the noise increase in most other areas.Finally,two new active rotors were proposed to generate the in-plane chordwise and spanwise excitation force.With the modified actuation law,the noise in most areas around the rotor was reduced,which improved the acoustic characteristics of rotor significantly.展开更多
The multilayer impedance composite sound absorption structure of the new muffler is proposed by combining the microporous plate structure with the resonant sound absorption structure of the porous material.Firstly,the...The multilayer impedance composite sound absorption structure of the new muffler is proposed by combining the microporous plate structure with the resonant sound absorption structure of the porous material.Firstly,the acoustic impedance and acoustic absorption coefficient of the new muffler structure are calculated by acoustic electric analogy method,and then the noise attenuation is calculated.When the new muffler structure parameters change,the relationship among the noise frequency,the sound absorption coefficient and the noise attenuation is calculated by using MATLAB.Finally,the calculated results are compared with the experimental data to verify the correctness of the theoretical calculation.The variation of resonance peak,resonance frequency and attenuation band width of each structural parameter is analyzed by the relation curve.The conclusion shows that it is feasible to use multilayer sound absorbing materials as the body structure of the new muffler.And the influence relationship between the change of various parameters of the sound absorption structure with the sound absorption coefficient and noise attenuation is obtained.展开更多
To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cyli...To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell.The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin.The results indicate that increasing the stiffness ratio,damping ratio,mass ratio,or decreasing the interval betweenmicro floating raft elements can improve the vibration and sound radiation reduction performance of this skin over the frequency range 0∼2000 Hz.Moreover,the mean quadratic velocity level and sound radiation power level of the finite cylindrical shell with this skin can be reduced by 12.00 dB and 9.65 dB respectively compared to the finite cylindrical shell with homogeneous viscoelastic coating in the frequency range from0∼2000Hz,implying a favorable performance of this skin for reducing the vibration and sound radiation of cylindrical shells.展开更多
Noise-reduction seats have been successfully used in concert halls, theaters, and other places that reduce noise. In this study, a new noise-reduction seat design was proposed for high-speed trains, which have unique ...Noise-reduction seats have been successfully used in concert halls, theaters, and other places that reduce noise. In this study, a new noise-reduction seat design was proposed for high-speed trains, which have unique interior noise spectral characteristics. First, before the noisereduction seat models were fabricated, the parameters of high-performance sound-absorbing materials and perforated plates were selected by conducting a standing-wave tube test. The sound-absorption effects of the noisereduction seats and normal seats were investigated and compared in a reverberation chamber. Test results showed that, compared with normal seats, the noise-reduction seats obtained a significantly improved sound-absorption coefficient in the entire frequency band. Furthermore, the test results were used to establish a simulation model for calculation, and the simulation results proved that the noise-reduction seats substantially reduced the noise in an entire train car. Finally, the noise-reduction seats were fabricated and installed in a full train car of an actual highspeed train. The test results showed that, compared with the normal seats, the noise-reduction seats decreased the noise level at a standard point in the passenger car by 1.5 dB. Therefore, the noise-reduction seats are effective in noise reduction.展开更多
以某型柴油机的油底壳作为研究对象,对其声振特性进行识别与分析,确定设计穿孔板隔声罩的共振频带范围。使用粒子群算法针对共振频率进行穿孔板参数的优化设计,再通过阻抗管试验确定小孔分布对吸声性能的影响,并对穿孔板隔声罩进行多目...以某型柴油机的油底壳作为研究对象,对其声振特性进行识别与分析,确定设计穿孔板隔声罩的共振频带范围。使用粒子群算法针对共振频率进行穿孔板参数的优化设计,再通过阻抗管试验确定小孔分布对吸声性能的影响,并对穿孔板隔声罩进行多目标形貌优化设计以避开共振及激励频率。目标柴油机上加装优化的油底壳穿孔板隔声罩后,整机总声压级降低0.5 d B,降噪效果较好。展开更多
文摘There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycle them to manufacture new tires. In the present work, hydraulic concrete plates added with waste tire rubber were manufactured to modify their sound absorption capacity. It was found that the rubber additions produce changes in the density of the material and in the sound absorption capacity. When the material is exposed to high-frequency sounds that correspond to high-pitched sounds, its absorption capacity increases. On the contrary, when the test frequency is low, that is, bass sounds, the sound absorption capacity decreases. The results obtained in this work suggest that the proposed mixtures are suitable for the possible manufacture of acoustic insulating shields.
基金supported by the Japan Society for the Promotion of Science KAKENHI(Grant numbers:20H04549 and 19K12822)the Japan Science and Technology Agency ACT–X(Grant Number:JPMJAX21K7).
文摘Accurate determination of the optical properties of biological tissues enables quantitative understanding of light propagation in these tissues for optical diagnosis and treatment applications.The absorption(μa)and scattering(μs)coe±cients of biological tissues are inversely analyzed from their diffuse re°ectance(R)and total transmittance(T),which are measured using a double integrating spheres(DIS)system.The inversion algorithms,for example,inverse adding doubling method and inverse Monte Carlo method,are sensitive to noise signals during the DIS measurements,resulting in reduced accuracy during determination.In this study,we propose an arti ficial neural network(ANN)to estimateμa andμs at a target wavelength from the R and T spectra measured via the DIS to reduce noise in the optical properties.Approximate models of the optical properties and Monte Carlo calculations that simulated the DIS measurements were used to generate spectral datasets comprisingμa,μs,R and T.Measurement noise signals were added to R and T,and the ANN model was then trained using the noise-added datasets.Numerical results showed that the trained ANN model reduced the effects of noise inμa andμs estimation.Experimental veri fication indicated noise-reduced estimation from the R and T values measured by the DIS with a small number of scans on average,resulting in measurement time reduction.The results demonstrated the noise robustness of the proposed ANN-based method for optical properties determination and will contribute to shorter DIS measurement times,thus reducing changes in the optical properties due to desiccation of the samples.
基金supported by the National Key R&D Program of China(No.2021YFB1507203)the National Natural Science Foundation of China(No.51838007).
文摘The screw air-source heat pump can cause incessant high noise levels during operation,which might hinder adoption of this energy-efficient heat pump.First,acoustic measurements and comparison testing were performed in this research.The measurements revealed that the compressor is the main noise source of the heat pump,and it shows a multipeak frequency distribution and a wide frequency spectrum under different work conditions,with multiple peaks at 63,250,and 1000 Hz.Then,a compressor sound insulation cover with broadband absorption was proposed,and it was experimentally proven that the insulation cover can reduce the maximum sound pressure level of one unit from 89.8 dBA to 79.1 dBA.Third,we proposed several noise reduction strategies and compared their noise reduction effects using computer simulation.The results showed that the noise problem can be effectively improved through the rational design of the sound barrier and the layout and opening options of heat pump.The distance between the sound barrier and heat pump and the sound attenuation due to diffraction ALa exhibit a U-shaped relation.For buildings of different heights,the optimal heights of noise barrier are proposed.The 5.5-meter is the optimal height of the sound barrier for single-story buildings.The conclusions can be applied to other building projects for heat pump noise reduction.
基金supported by the National Natural Science Foundation of China(No.11972190)the Aeronautical Science Foundation of China(No.20185752)。
文摘Numerical studies were performed to investigate the mechanism and potential of several active rotors for reducing low-frequency in-plane thickness noise generated by rotating blades.A numerical method coupling the blade element theory,prescribed wake model and Fowcs Williams-Hawkings(FW-H)equation was established for rotor noise prediction.It is indicated that the excitation force on the blade tip can generate anti-noise that to partly cancel the in-plane thickness noise with an appropriate actuation law.Results from the phase,frequency and amplitude sweeps show that the excitation force direction and actuation law are the crucial factors affecting the noise reduction,which determine the noise reduction area in the elevation and azimuth directions,respectively.The active trailing-flap rotor can generate the in-plane excitation force,but because of large lift-drag ratio the anti-noise is mainly from the vertical lift,which is caused by flap deflection similar to a variable camber airfoil.For the harmonic control rotor and active twist rotor,the excitation force is also attributed to the vertical blade lift.The vertical force can reduce the noise near the rotor plane,it will also cause the noise increase in most other areas.Finally,two new active rotors were proposed to generate the in-plane chordwise and spanwise excitation force.With the modified actuation law,the noise in most areas around the rotor was reduced,which improved the acoustic characteristics of rotor significantly.
基金National Natural Science Foundation of China(Nos.51705545 and 15A460041)。
文摘The multilayer impedance composite sound absorption structure of the new muffler is proposed by combining the microporous plate structure with the resonant sound absorption structure of the porous material.Firstly,the acoustic impedance and acoustic absorption coefficient of the new muffler structure are calculated by acoustic electric analogy method,and then the noise attenuation is calculated.When the new muffler structure parameters change,the relationship among the noise frequency,the sound absorption coefficient and the noise attenuation is calculated by using MATLAB.Finally,the calculated results are compared with the experimental data to verify the correctness of the theoretical calculation.The variation of resonance peak,resonance frequency and attenuation band width of each structural parameter is analyzed by the relation curve.The conclusion shows that it is feasible to use multilayer sound absorbing materials as the body structure of the new muffler.And the influence relationship between the change of various parameters of the sound absorption structure with the sound absorption coefficient and noise attenuation is obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.51775123,52075111)the Fundamental Research Funds for the Central Universities(Grant No.3072021CF0702).
文摘To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell.The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin.The results indicate that increasing the stiffness ratio,damping ratio,mass ratio,or decreasing the interval betweenmicro floating raft elements can improve the vibration and sound radiation reduction performance of this skin over the frequency range 0∼2000 Hz.Moreover,the mean quadratic velocity level and sound radiation power level of the finite cylindrical shell with this skin can be reduced by 12.00 dB and 9.65 dB respectively compared to the finite cylindrical shell with homogeneous viscoelastic coating in the frequency range from0∼2000Hz,implying a favorable performance of this skin for reducing the vibration and sound radiation of cylindrical shells.
文摘Noise-reduction seats have been successfully used in concert halls, theaters, and other places that reduce noise. In this study, a new noise-reduction seat design was proposed for high-speed trains, which have unique interior noise spectral characteristics. First, before the noisereduction seat models were fabricated, the parameters of high-performance sound-absorbing materials and perforated plates were selected by conducting a standing-wave tube test. The sound-absorption effects of the noisereduction seats and normal seats were investigated and compared in a reverberation chamber. Test results showed that, compared with normal seats, the noise-reduction seats obtained a significantly improved sound-absorption coefficient in the entire frequency band. Furthermore, the test results were used to establish a simulation model for calculation, and the simulation results proved that the noise-reduction seats substantially reduced the noise in an entire train car. Finally, the noise-reduction seats were fabricated and installed in a full train car of an actual highspeed train. The test results showed that, compared with the normal seats, the noise-reduction seats decreased the noise level at a standard point in the passenger car by 1.5 dB. Therefore, the noise-reduction seats are effective in noise reduction.
文摘以某型柴油机的油底壳作为研究对象,对其声振特性进行识别与分析,确定设计穿孔板隔声罩的共振频带范围。使用粒子群算法针对共振频率进行穿孔板参数的优化设计,再通过阻抗管试验确定小孔分布对吸声性能的影响,并对穿孔板隔声罩进行多目标形貌优化设计以避开共振及激励频率。目标柴油机上加装优化的油底壳穿孔板隔声罩后,整机总声压级降低0.5 d B,降噪效果较好。