期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Sound absorption property of wood for five eucalypt species 被引量:7
1
作者 江泽慧 赵荣军 费本华 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第3期207-210,共4页
The sound absorption coefficients of wood and wood boards for five eucalypt species (Eucalyptus urophylla, Euca-lyptus urophylla E. grandis, Eucalyptus urophylla E. tereticornis, Eucalyptus urophylla E. camaldulensis ... The sound absorption coefficients of wood and wood boards for five eucalypt species (Eucalyptus urophylla, Euca-lyptus urophylla E. grandis, Eucalyptus urophylla E. tereticornis, Eucalyptus urophylla E. camaldulensis and Eucalyptus cloeziana) that were collected from plantation in Dongmen Forestry Center of Guangxi Province, China were tested with stand-ing wave method and their sound absorption properties were also compared. The results showed that the sound absorption co-efficients of the five eucalypt wood species did not change evidently below 1000 Hz, but above 1000 Hz their sound absorption coefficients increased with the increasing frequency. The difference in sound absorption coefficient among five species of eucalypt wood is not evident at the tested frequency range (200-2000 Hz), but the sound absorption property of Eucalyptus urophylla at low frequency is better than that of other four species. The sound absorption coefficient of the tangential-sawn board is higher than that of the radial-sawn board. The sound absorption property of eucalypt wood of 0.5 cm in thickness is much better than that of 1.0 cm in thickness. It is concluded that wood sound absorption properties of eucalypts are affected by their board thickness and the type of sawn timber within the testing frequency, but the variance of wood sound absorption property among the five tested species is not significant. 展开更多
关键词 WOOD Standing wave method sound absorption coefficient Eucalypt plantation
下载PDF
Sound absorption property of open-pore aluminum foams 被引量:1
2
作者 WANG Fang WANG Lu-cai +1 位作者 WU Jian-guo YOU Xiao-hong 《China Foundry》 SCIE CAS 2007年第1期31-33,共3页
This paper presents a study on sound absorption property of aluminum foam by evaluating its sound absorption coefficients using standing wave tube method. Experimental results showed that the average values of sound a... This paper presents a study on sound absorption property of aluminum foam by evaluating its sound absorption coefficients using standing wave tube method. Experimental results showed that the average values of sound absorption coefficients (over the test frequency range) are all above 0.4, which indicate very good sound absorption property of the aluminum foams. The sound absorption coefficient is affected by frequency and pore structure, and reaches its maximum value at around 1 000 Hz. With the increase of porosity and decrease of cell diameter, the sound absorption coefficient values increase. 展开更多
关键词 aluminum foam sound absorption property sound absorption coefficients plane-wave impedance tube
下载PDF
Development of a High Sound Absorption Material CEMCOM 被引量:4
3
作者 马保国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第4期5-8,共4页
Based on sound absorption mechanism of material,the special sound absorption material CEMCOM for road sound insulation is introduced.This high sound absorption material is mainly composed of expanded perlite.Using mul... Based on sound absorption mechanism of material,the special sound absorption material CEMCOM for road sound insulation is introduced.This high sound absorption material is mainly composed of expanded perlite.Using multiple sound absorption structure can improve sound absorption property of material.According to the preparation principle and durability design of material,a new kind of material with low cost and high durability is developed. 展开更多
关键词 sound absorption coefficient sound absorption structure porous material
下载PDF
Optimization of Sound Absorption and Insulation Performances of a Dual-Cavity Resonant Micro-Perforated Plate 被引量:1
4
作者 Wei Chen Zhaofeng Guo +5 位作者 Hongda Feng Sheng Hu Ling Lu Chuanmin Chen Xiaowen Wu Hao Cao 《Fluid Dynamics & Materials Processing》 EI 2022年第2期481-496,共16页
This study investigates a dual-cavity resonant composite sound-absorbing structure based on a micro-perforated plate.Using the COMSOL impedance tube model,the effects of various structural parameters on sound absorpti... This study investigates a dual-cavity resonant composite sound-absorbing structure based on a micro-perforated plate.Using the COMSOL impedance tube model,the effects of various structural parameters on sound absorption and sound insulation performances are analyzed.Results show that the aperture of the micro-perforated plate has the greatest influence on the sound absorption coefficient;the smaller the aperture,the greater is this coefficient.The thickness of the resonance plate has the most significant influence on the sound insulation and resonance frequency;the greater the thickness,the wider the frequency domain in which sound insulation is obtained.In addition,the effect of filling the structural cavity with porous foam ceramics has been studied,and it has been found that the porosity and thickness of the porous material have a significant effect on the sound absorption coefficient and sound insulation,while the pore size exhibits a limited influence. 展开更多
关键词 Micro perforated plate double cavity compound resonance structure sound absorption coefficient sound insulation
下载PDF
Improving the Sound Absorption Properties of Flexible Polyurethane (PU) Foam using Nanofibers and Nanoparticles 被引量:1
5
作者 Roohalah Hajizadeh Ali Khavanin +2 位作者 Mohammad Barmar Ahmad Jonidi Jafari Somayeh Farhang Dehghan 《Sound & Vibration》 2019年第5期207-222,共16页
Polyurethane foam as the most well-known absorbent materials has a suitable absorption coefficient only within a limited frequency range.The aim of this study was to improve the sound absorption coefficient of flexibl... Polyurethane foam as the most well-known absorbent materials has a suitable absorption coefficient only within a limited frequency range.The aim of this study was to improve the sound absorption coefficient of flexible polyurethane(PU)foam within the range of various frequencies using clay nanoparticles,polyacrylonitrile nanofibers,and polyvinylidene fluoride nanofibers.The response surface method was used to determine the effect of addition of nanofibers of PAN and PVDF,addition of clay nanoparticles,absorbent thickness,and air gap on the sound absorption coefficient of flexible polyurethane foam(PU)across different frequency ranges.The absorption coefficient of the samples was measured using Impedance Tubes device.Nano clay at low thicknesses as well as polyacrylonitrile nanofibers and polyvinyl fluoride nanofibers at higher thicknesses had a greater positive effect on absorption coefficient.The mean sound absorption coefficient in the composite with the highest absorption coefficient at middle and high frequencies was 0.798 and 0.75,respectively.In comparison with pure polyurethane foam with the same thickness and air gap,these values were 2.22 times at the middle frequencies and 1.47 times at high frequencies,respectively.Surface porosity rose with increasing nano clay,but decreased with increasing polyacrylonitrile nanofibers and polyvinyl fluoride nanofibers.The results indicated that the absorption coefficient was elevated with increasing the thickness and air gap.This study suggests that the use of a combination of nanoparticles and nanofibers can enhance the acoustic properties of flexible polyurethane foam. 展开更多
关键词 sound absorption coefficient flexible polyurethane foam nano clay polyacrylonitrile nanofibers polyvinyl fluoride nanofibers
下载PDF
Improving the Cellular Characteristics of Aluminum Foam for Maximum Sound Absorption Coefficient Using Genetic Algorithm
6
作者 Mohammad Javad Jafari Mohsen Niknam Sharak +3 位作者 Ali Khavanin Touraj Ebadzadeh Mahmood Fazlali Rohollah Fallah Madvari 《Sound & Vibration》 EI 2021年第2期117-130,共14页
Fabricating of metal foams with desired morphological parameters including pore size,porosity and pore opening is possible now using sintering technology.Thus,if it is possible to determine the morphology of metal foa... Fabricating of metal foams with desired morphological parameters including pore size,porosity and pore opening is possible now using sintering technology.Thus,if it is possible to determine the morphology of metal foam to absorb sound at a given frequency,and then fabricate it through sintering,it is expected to have optimized metal foams for the best sound absorption.Theoretical sound absorption models such as Lu model describe the relationship between morphological parameters and the sound absorption coefficient.In this study,the Lu model was used to optimize the morphological parameters of aluminum metal foam for the best sound absorption coefficient.For this purpose,the Lu model was numerically solved using written codes in MATLAB software.After validating the proposed codes with benchmark data,the genetic algorithm(GA)was applied to optimize the affecting morphological parameters on the sound absorption coefficient.The optimization was carried out for the thicknesses of 5 mm to 40 mm at the sound frequency range of 250 Hz–8000 Hz.The optimized parameters ranged from 50%to 95%for porosity,0.1 mm to 4.5 mm for pore size,and 0.07 mm to 0.6 mm for pore opening size.The result of this study was applied to fabricate the desired aluminum metal foams for the best sound absorption.The novel approach applied in this study,is expected to be successfully applied in for best sound absorption in desired frequencies. 展开更多
关键词 Acoustic model Genetic Algorithm(GA) metal foam optimization sound absorption Coefficient(SAC)
下载PDF
Theoretical Calculation and Analysis of Muffler Based on Multilayer Sound Absorbing Material 被引量:2
7
作者 ZHU Congyun LIU Rongji 《Journal of Donghua University(English Edition)》 CAS 2022年第1期40-54,共15页
The multilayer impedance composite sound absorption structure of the new muffler is proposed by combining the microporous plate structure with the resonant sound absorption structure of the porous material.Firstly,the... The multilayer impedance composite sound absorption structure of the new muffler is proposed by combining the microporous plate structure with the resonant sound absorption structure of the porous material.Firstly,the acoustic impedance and acoustic absorption coefficient of the new muffler structure are calculated by acoustic electric analogy method,and then the noise attenuation is calculated.When the new muffler structure parameters change,the relationship among the noise frequency,the sound absorption coefficient and the noise attenuation is calculated by using MATLAB.Finally,the calculated results are compared with the experimental data to verify the correctness of the theoretical calculation.The variation of resonance peak,resonance frequency and attenuation band width of each structural parameter is analyzed by the relation curve.The conclusion shows that it is feasible to use multilayer sound absorbing materials as the body structure of the new muffler.And the influence relationship between the change of various parameters of the sound absorption structure with the sound absorption coefficient and noise attenuation is obtained. 展开更多
关键词 MUFFLER micro-perforated plate multilayer sound absorbing material sound absorption coefficient noise attenuation
下载PDF
Application of Response Surface Methodology to Optimize the Preparation of Rubber Foam Composite as Sound-Absorbing Material Using Scrap Rubber Powder 被引量:1
8
作者 ZHANG Xiangfeng ZHANG Jia CHENG Ziqiao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1376-1383,共8页
In this paper, scrap rubber powder(SRP), azodicarbonamide(ADC) as foaming agent and double-component epoxy resins(ER) as binder were used to prepare porous sound-absorbing material of rubber foam composite(RFC) by hot... In this paper, scrap rubber powder(SRP), azodicarbonamide(ADC) as foaming agent and double-component epoxy resins(ER) as binder were used to prepare porous sound-absorbing material of rubber foam composite(RFC) by hot-pressing process. Response surface methodology(RSM) was employed to evaluate three process variables, i e, specimen thickness(A), ADC dosage(B) and foaming temperature(C), and to establish two polynomial function model equation between sound absorption coefficient(α) and three process factors(A, B, C) at middle and low frequency 250 Hz, 500 Hz, 800 Hz, 1 000 Hz to determine the optimal preparation condition of RFC. The statistical analysis of results demonstrated that specimen thickness(A) exerted significant impact on sound absorption properties of RFC. And the optimum prepared condition of RFC was 10 mm specimen thickness, 3.00 g ADC dosage, and approximately 196 ℃ foaming temperature. Under optimal condition, sound absorption coefficient of RFC could reach 5.68%(250 Hz), 7.67%(500 Hz), 20.73%(800 Hz), 18.71%(1 000 Hz), coinciding with the predicted values 5.70%(250 Hz), 7.69%(500 Hz), 20.77%(800 Hz), 18.74%(1 000 Hz) from the predicted polynomial function model, which exhibited that RSM could be used to optimize the preparation process of sound-absorbing materials. 展开更多
关键词 RFC RSM thickness ADC dosage foaming temperature sound absorption coefficient
下载PDF
INVESTIGATION ON SOUND ABSORPTION PROPERTIES OF KAPOK FIBERS 被引量:12
9
作者 Hai-fan Xiang Dong Wang +2 位作者 Hui-chao Liu 赵宁 徐坚 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第3期521-529,共9页
Sound absorption properties of natural kapok fibers have been investigated. Kapok fibrous assemblies with different bulk density, thickness, fiber length and orientation were manufactured, and their acoustical perform... Sound absorption properties of natural kapok fibers have been investigated. Kapok fibrous assemblies with different bulk density, thickness, fiber length and orientation were manufactured, and their acoustical performances were evaluated by using an impedance tube instrument. Results show that the kapok fiber has excellent acoustical damping performance due to its natural hollow structure, and the sound absorption coefficients of kapok fibrous assemblies are significantly affected by the bulk density, thickness and arrangement of kapok fibers but less dependent on the fiber length. Compared with assemblies of commercial glass wool and degreasing cotton fibers, the kapok fiber assemblies with the same thickness but much smaller bulk density may have the similar sound absorption coefficients. Theoretical modelling of the acoustical damping performance of kapok fibers shows a good agreement with the experimental data. All the results demonstrate that kapok fiber is a promising light and environment-friendly sound absorption material. 展开更多
关键词 Kapok fiber Hollow structure sound absorption coefficient Bulk density.
原文传递
Effect of Plastocene Embedment in the Microperforated Plate on Its AcousticPerformance
10
作者 Yipu Wang Yonghua Wang +2 位作者 Zheming Liu Huadong Yu Jinkai Xu 《Journal of Renewable Materials》 SCIE EI 2021年第5期923-941,共19页
Noise pollution is one of the contemporary environmental pollution, which seriously damages people’s green andhealthy life. In order to further improve the low frequency sound absorption performance of microperforate... Noise pollution is one of the contemporary environmental pollution, which seriously damages people’s green andhealthy life. In order to further improve the low frequency sound absorption performance of microperforatedpanel (MPP), a new plastocene coupled microperforated plate (PCMPP) is proposed. The acoustic propertiesof PCMPP with different apertures and perforation ratio were measured by transfer function method and compared with that of conventional MPPs. It is found that when the aperture was 0.8 mm, the peak value of soundabsorption coefficient of PCMPP decreased by 150 Hz compared with MPP. In a certain range, PCMPP with larger apertures showed a greater influence on sound absorption property in low frequency. In addition, higher perforation ratio led to a greater PCMPP bandwidth of sound absorption. On the other hand, the effect of PCMPPwith aperture of 0.2 mm on the performance of MPP was reduced, which could be compensated by increasing theperforation ratio. Furthermore, we found that the effect of aperture, perforation ratio and cavity on the soundabsorption performance of PCMPP was consistent with that of ideal rigid MPP. The step cooling curve showedthat the plastocene began to soften at about 50℃, representing a great potential for a non-high temperaturework environment. 展开更多
关键词 Noise pollution plastocene coupled microperforated panel transfer function method sound absorption coefficient
下载PDF
An Elastic Absorber Theory for a Thin Fabric Sheet
11
作者 张新安 《Journal of Donghua University(English Edition)》 EI CAS 2007年第3期375-380,共6页
The current sound absorption theory which is based on Rayleigh model believes that fibrous material absorb sound by the fluid frictional energy dissipation between the air and the solid fibers. However, Rayleigh model... The current sound absorption theory which is based on Rayleigh model believes that fibrous material absorb sound by the fluid frictional energy dissipation between the air and the solid fibers. However, Rayleigh model is only useful for a quanlitative understanding of effects In a porous material but not for calculation of the acoustical properties of real absorbent. In this paper, a new vibration sound absorption theory which is totally different from classical theory was put forward. The specific acoustic impedance of fiber layers have been derived from the membrane vibration equation and the sound absorption coefficient calculated agree with test results. The new theory can explaIn the phenomenon that thIn fiber layers exhibit less sound absorption coefficient when it was as the cover fabric of sound absorber, but it is more efficient to sound absorption when it was hang as the curtains or have back cavity behind it. 展开更多
关键词 membrane vibration theory specific acousticimpedance fibrous material sound absorption coefficient
下载PDF
Preparation,Structure,and Properties of Flexible Polyurethane Foams Filled with Fumed Silica
12
作者 LIU Ting MAO Liangliang LIU Fuwei JIANG Wuzhou HE Zhaobo FANG Pengfei 《Wuhan University Journal of Natural Sciences》 CAS 2011年第1期29-32,共4页
Flexible polyurethane (PU) foams with different load-ing mass fraction (0%-2.0%) of fumed silica were synthesized by free-rising foaming method. The addition of 1.4% fumed silica makes the cells diffuse more unifo... Flexible polyurethane (PU) foams with different load-ing mass fraction (0%-2.0%) of fumed silica were synthesized by free-rising foaming method. The addition of 1.4% fumed silica makes the cells diffuse more uniform in the PU foam and the temperature of degradation occurring with a maximum weight loss rate is about 7℃ higher than that of pure PU foam. Most signifi-cantly,the sound absorption peaks of the filled PU foams shift to the low frequency region (from 997 Hz to 711 Hz) with increasing fumed silica content (0%-2.0%). The average sound absorption coefficients of filled PU foams increase except the content of 0.35% fumed silica. The experimental results show that flexible PU foams filled with fumed silica have excellent sound absorption characteristics in low-frequency regions. 展开更多
关键词 polyurethane foam fumed silica sound absorption coefficients sound absorption peak
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部