In this paper, a general model on sound reflection from a layered solid medium with rigid and slip interfaces is proposed by using matrix method. Analytical expressions for reflection coefficients of both longitudinal...In this paper, a general model on sound reflection from a layered solid medium with rigid and slip interfaces is proposed by using matrix method. Analytical expressions for reflection coefficients of both longitudinal and transverse waves from the layered solid medium with one or two slip interfaces are derived. Numerical results of sound reflection coefficients from some typical adhesive joints with slip and rigid interfaces are presented, which may be useful for correct choice of technical parameters in ultrasonic evaluation of their interface properties.展开更多
An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the...An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the Spatial Transformation of Sound Fields (STSF), the complex pressure on two parallel planes near by the material surface or the reflection surface must be measured. By the acoustic intensity measurement, the phases of complex pressure on two parallel planes are given. The results of the numerical simulations are shown that the error due to the finite size of the measurement area, and it may be reduced by using a dipole sound source.展开更多
Field experimental seismic sounding permitted us to obtain optimal shallow seismic reflection sounding parameters.In process of data processing,we obtained a high-qualitative shallow seismic reflection sounding profil...Field experimental seismic sounding permitted us to obtain optimal shallow seismic reflection sounding parameters.In process of data processing,we obtained a high-qualitative shallow seismic reflection sounding profile by using the techniques such as filtering,edition surgical blanking,prediction deconvolution,fitting static correlation of first arrival time,and velocity analysis.Comprehensive analysis on the information of reflection wave groups along the seismic sounding profile and the stratigraphic and neogeochronological data obtained from many drills near the sounding line reveals that the upper termination of the detected fault zone is located at depth of 75~80 m,in the Middle Pleistocene deposits dated to be about 220 ka BP.The continuity,discontinuity,increasing and decreasing amount of reflection wave groups and change of their configurations,in combination with geological columns of drills,permitted us to know that the width of upper termination of the fault zone is 100 m.It can be inferred from the variation of number of reflection wave groups along the profile that the scarp of hidden fault is 200 m wide and the fault is a synsedimentary active fault in the Early Pleistocene and the early stage of Middle Pleistocene.No tectonic movement,which offset the covering deposits,had occurred since the late stage of Middle Pleistocene.展开更多
From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associa...From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associated studies in North China.They have made significant progress on several key issues in the geosciences, such as the crustal and upper mantle structure and the seismogenic environment of strong earthquakes. Deep seismic profiling results indicate a complex tectonic setting in the strong earthquake areas of North China, where a listric normal fault and a low-angle detachment in the upper crust coexist with a high-angle deep fault passing through the lower crust to the Moho beneath the hypocenter. Seismic tomography images reveal that most of the large earthquakes occurred in the transition between the high-and low-velocity zones, and the Tangshan earthquake area is characterized by a low-velocity anomaly in the middle-lower crust. Comprehensive analysis of geophysical data identified that the deep seismogenic environment in the North China extensional tectonic region is generally characterized by a low-velocity anomalous belt beneath the hypocenter, inconsistency of the deep and shallow structures in the crust, a steep crustalal-scale fault,relative lower velocities in the uppermost mantle, and local Moho uplift, etc. This indicates that the lithospheric structure of North China has strong heterogeneities. Geologically, the North China region had been a stable craton named the North China Craton or in brief the NCC, containing crustal rocks as old as ~3.8 Ga. The present-day strong seismic activity and the lower velocity of the lower crust in the NCC are much different from typical stable cratons around the world. These findings provide significant evidence for the destruction of the NCC. Although deep seismic profiling and seismic tomography have greatly enhanced knowledge about the deep-seated structure and seismogenic environment, some fundamental issues still remain and require further work.展开更多
文摘In this paper, a general model on sound reflection from a layered solid medium with rigid and slip interfaces is proposed by using matrix method. Analytical expressions for reflection coefficients of both longitudinal and transverse waves from the layered solid medium with one or two slip interfaces are derived. Numerical results of sound reflection coefficients from some typical adhesive joints with slip and rigid interfaces are presented, which may be useful for correct choice of technical parameters in ultrasonic evaluation of their interface properties.
文摘An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the Spatial Transformation of Sound Fields (STSF), the complex pressure on two parallel planes near by the material surface or the reflection surface must be measured. By the acoustic intensity measurement, the phases of complex pressure on two parallel planes are given. The results of the numerical simulations are shown that the error due to the finite size of the measurement area, and it may be reduced by using a dipole sound source.
基金A High-new Technique Project by State Development and Planning Commission of China (2001977).
文摘Field experimental seismic sounding permitted us to obtain optimal shallow seismic reflection sounding parameters.In process of data processing,we obtained a high-qualitative shallow seismic reflection sounding profile by using the techniques such as filtering,edition surgical blanking,prediction deconvolution,fitting static correlation of first arrival time,and velocity analysis.Comprehensive analysis on the information of reflection wave groups along the seismic sounding profile and the stratigraphic and neogeochronological data obtained from many drills near the sounding line reveals that the upper termination of the detected fault zone is located at depth of 75~80 m,in the Middle Pleistocene deposits dated to be about 220 ka BP.The continuity,discontinuity,increasing and decreasing amount of reflection wave groups and change of their configurations,in combination with geological columns of drills,permitted us to know that the width of upper termination of the fault zone is 100 m.It can be inferred from the variation of number of reflection wave groups along the profile that the scarp of hidden fault is 200 m wide and the fault is a synsedimentary active fault in the Early Pleistocene and the early stage of Middle Pleistocene.No tectonic movement,which offset the covering deposits,had occurred since the late stage of Middle Pleistocene.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91014006, 90914005 & 41474073)
文摘From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associated studies in North China.They have made significant progress on several key issues in the geosciences, such as the crustal and upper mantle structure and the seismogenic environment of strong earthquakes. Deep seismic profiling results indicate a complex tectonic setting in the strong earthquake areas of North China, where a listric normal fault and a low-angle detachment in the upper crust coexist with a high-angle deep fault passing through the lower crust to the Moho beneath the hypocenter. Seismic tomography images reveal that most of the large earthquakes occurred in the transition between the high-and low-velocity zones, and the Tangshan earthquake area is characterized by a low-velocity anomaly in the middle-lower crust. Comprehensive analysis of geophysical data identified that the deep seismogenic environment in the North China extensional tectonic region is generally characterized by a low-velocity anomalous belt beneath the hypocenter, inconsistency of the deep and shallow structures in the crust, a steep crustalal-scale fault,relative lower velocities in the uppermost mantle, and local Moho uplift, etc. This indicates that the lithospheric structure of North China has strong heterogeneities. Geologically, the North China region had been a stable craton named the North China Craton or in brief the NCC, containing crustal rocks as old as ~3.8 Ga. The present-day strong seismic activity and the lower velocity of the lower crust in the NCC are much different from typical stable cratons around the world. These findings provide significant evidence for the destruction of the NCC. Although deep seismic profiling and seismic tomography have greatly enhanced knowledge about the deep-seated structure and seismogenic environment, some fundamental issues still remain and require further work.