Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperatu...Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperature,sintering time,and pore former addition on the performance of the porous sound-absorbing materials were investigated.The results show that the porosity of the specimens can reach above 50.0%;the compressive strength and average sound-adsorption coefficient of the sintered specimens are above 3.0 MPa and 0.47,respectively.The optimum preparation conditions for the steel slag porous sound-absorbing materials are as follows:mass fraction of fly ash 50%,waste EPS particles 3.6 g,sintering temperature 1100℃,and sintering time 7.5h,which are determined by considering the properties of the sound-absorbing materials,energy consumption and cost.展开更多
With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic ...With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic development.This paper proposed a novel eco-friendly sound absorbing structure(NSAS)liner for noise reduction in elevator shafts.The base layer integrated with the shaft walls is a damping gypsum mortarboard,and a rock wool board and a perforated cement mortarboard are used to compose the NSAS.Based on the acoustic impedance theory of porous materials and perforated panels,the sound absorption theory of the NSAS was proposed;the parameter effects of the rock wool board(flow resistivity,porosity,structure factor)and perforated panel(perforated rates,thickness,density,perforated diameter)on NSAS absorption were discussed theoretically for absorption improvement,and experiments were also conducted.Numerical results showed that the perforation rate,the thickness of the perforated plate,and the porosity,flow resistance,and volume density of the rock wool board played a key issue in the absorption performances of the NSAS.Experiments verified the accuracy of the proposed theoretical model.Wideband sound absorption performance of the NSAS at frequencies between 500–1600 Hz was achieved in both numerical analysis and experiments,and the sound absorption coefficient was improved to 0.72 around 1000 Hz after parameter adjustments.The NSAS proposed in this paper can also be made of other renewable materials with preferable structure strength and still has the potential to broaden the absorption bandwidth.It can provide a reference for controlling the elevator shaft noise.展开更多
In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.T...In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band.展开更多
An ideal nature system for the study of post-depositional submarine mass changing under wave loading was selected in the intertidal platform of the subaqueous Huanghe River Delta, a delta formed during period from 196...An ideal nature system for the study of post-depositional submarine mass changing under wave loading was selected in the intertidal platform of the subaqueous Huanghe River Delta, a delta formed during period from 1964 to 1976 as the Huanghe River discharged into the Bohai Gulf by Diaokou distributary. A road embankment constructed for petroleum recovery on the inter-tidal platform in 1995 induced the essential varieties of hydrodynamic conditions on the both sides of the road. With both sides sharing similarities in (1) initial sedimentary environment, (2) energetic wave loading, (3) differential hydrodynamic conditions in later stages, (4) enough long-range action, and (5) extreme shallow water inter-tidal platforms; the study is representative and feasible as well. Two study sites were selected on each side of the road, and a series of measurements, samplings, laboratory experiments have been carried out, including morphometry, hydrodynamic conditions, sediment properties, granularity composition, and fractal dimension calculation of the topography in the two adjacent areas. It was observed that in the outer zone, where wave loading with high magnitude prevailed, the tidal flat was bumpy and exhibited a high erosion rate and high fractal dimension. Further, the fractal dimension diminished quickly, keeping with the enlarging of calculative square size. However in the inner zone, where the hydrodynamic condition was weak, the tidal fiat was fiat and exhibited a low erosion rate and low fractal dimensions; the fractal dimension diminished with the enlarging of calcu- lative square size. The fractal dimensions in the different hydrodynamic areas equalized increasingly as the calculative square size accreted to threshold, indicating that the hydrodynamic condition plays a significant role in topography construction and submarine delta erosion process. Additionally, the later differentiation of sediment properties, granularity composition, microstructure characteristics, and mineral composition induced by the different hydrodynamic conditions can also contribute to the variation of topography and sea-bed erosion in the two adjacent areas.展开更多
The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The infl...The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5 MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50%(wt.%), percentage of coal powder of 30%(wt.%), sintering temperature of 1130°C,and sintering time of 6.0 hr, which were determined by analyzing the properties of the sound-absorbing material.展开更多
The physical properties of pattern characteristics for typical Acoustic Sea-bed Profiling Records (ASPRs) in the area of Changjiang Estuary and the East China Sea are analyzed in this paper. Nine pattern characterist...The physical properties of pattern characteristics for typical Acoustic Sea-bed Profiling Records (ASPRs) in the area of Changjiang Estuary and the East China Sea are analyzed in this paper. Nine pattern characteristics are summarized and it was shown that 9 geological categories can be determined by 4 pattern characteristics. Based on the above analysis, a Bayes-based pattern characteristics classifier for interpretation of ASPRs is developed.展开更多
An expert system based on the fuzzy set theory has been developed for geological interpretation of Acoustic Seabed Profiling Records(ASPR). After successively extracting each state of several main pattern characterist...An expert system based on the fuzzy set theory has been developed for geological interpretation of Acoustic Seabed Profiling Records(ASPR). After successively extracting each state of several main pattern characteristics shown on the ASPRs, the similarities between this pattern characteristic-state set and the standard ones corresponding to different geological categories of marine sediments are computed respectively By comparillg these values of sidrilarities, the conclusion of geological classification to the ASPR can be derived.展开更多
It has been known that the error of measuring acoustic veloicities of thin sediment layers by the well-known T2-X2 approach is usually untolerable, and that this approach is unavailable in the case where sea-bed is ha...It has been known that the error of measuring acoustic veloicities of thin sediment layers by the well-known T2-X2 approach is usually untolerable, and that this approach is unavailable in the case where sea-bed is hard because no echo from any subsurface below sea-bottom can be received. Therefore applying the ray-parameter method to thin layers and the refraction method to hard layers need to be considered in an acoustic velocity measurement system composed of a sound source and a towed hydrophone streamer. Some problems of practical importance about the applications of the two methods, such as echo-data processing procedures and error estimations in measuring acoustic veloicities, are discussed, and the effectiveness of theoretical analyses has been verified through computer simulations.展开更多
As a kind of classical low-frequency sound-absorbing material,the microperforated plate(MPP)has been widely used.Here,we inspired by the sound absorption mechanism of the MPP,a spiral metasurface(SM)is designed and th...As a kind of classical low-frequency sound-absorbing material,the microperforated plate(MPP)has been widely used.Here,we inspired by the sound absorption mechanism of the MPP,a spiral metasurface(SM)is designed and the analytical solution of acoustic impedance and sound absorption coefficient are obtained.The relationship between the sound absorption properties of the MPP and the SM with their own structures is systematically studied,and the analytical solutions are used to optimise the structure.It is concluded that the MPP and the SM of the same thickness achieve effective absorption in the frequency range between 390-900 Hz and 1920-4266 Hz,with a total thickness less than 1/6 of the wavelength.Meanwhile,the numerical calculation shows that the MPP and SM can match well with the background medium in the effective rang.Our study provides new insights into the design methods of sound-absorbing materials and is potentially suitable for many acoustic engineering applications.展开更多
This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0.In the present study,a metal reflect...This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0.In the present study,a metal reflector and reflectors made of three different sound-absorbing materials(grass wool and polyurethane foam)were employed,and the reflector size was varied.Acoustic measurement is carried out to obtain the acoustic characteristics such as frequency,amplitude of screech tone and overall sound pressure level(OASPL).A high-quality schlieren optical system is used to visualize the detailed structure of supersonic jet.The results obtained show that the acoustic characteristics of supersonic jet noise are strongly dependent upon the jet pressure ratio and the reflector size.It is also found that the reflector with sound-absorbing material reduces the screech tone amplitude by about 5-13dB and the overall sound pressure levels by about 2-5dB,compared with those of the metal reflector.展开更多
A computer-based pattern recognition systems has been developed for geological interpretation of Acoustic Sea-bed Profiling Records. Based on practical experience accumu- lated by specialists, the main pattern charact...A computer-based pattern recognition systems has been developed for geological interpretation of Acoustic Sea-bed Profiling Records. Based on practical experience accumu- lated by specialists, the main pattern characteristics of Acoustic Sea-bed Profiling Records (ASPRs) corresponding to typical geological categories of marine sediment layers in the area of the East China Sea have been expressed altogether in 9 aspects, and a dynamic reasoning expert system designed correspondingly. Starting from an initial premise Characteristic and makes the next step reasoning until the final conclusion (i.e. which geological category the sediment layer belongs to.) is derived, in the mean time, for quantitatively estimating the correctness of the final conclusions, the so-called certainty factor is calculated.展开更多
Noise-reduction seats have been successfully used in concert halls, theaters, and other places that reduce noise. In this study, a new noise-reduction seat design was proposed for high-speed trains, which have unique ...Noise-reduction seats have been successfully used in concert halls, theaters, and other places that reduce noise. In this study, a new noise-reduction seat design was proposed for high-speed trains, which have unique interior noise spectral characteristics. First, before the noisereduction seat models were fabricated, the parameters of high-performance sound-absorbing materials and perforated plates were selected by conducting a standing-wave tube test. The sound-absorption effects of the noisereduction seats and normal seats were investigated and compared in a reverberation chamber. Test results showed that, compared with normal seats, the noise-reduction seats obtained a significantly improved sound-absorption coefficient in the entire frequency band. Furthermore, the test results were used to establish a simulation model for calculation, and the simulation results proved that the noise-reduction seats substantially reduced the noise in an entire train car. Finally, the noise-reduction seats were fabricated and installed in a full train car of an actual highspeed train. The test results showed that, compared with the normal seats, the noise-reduction seats decreased the noise level at a standard point in the passenger car by 1.5 dB. Therefore, the noise-reduction seats are effective in noise reduction.展开更多
基金Project(2011AA06A105)supported by the National High-tech Research and Development Program of China
文摘Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperature,sintering time,and pore former addition on the performance of the porous sound-absorbing materials were investigated.The results show that the porosity of the specimens can reach above 50.0%;the compressive strength and average sound-adsorption coefficient of the sintered specimens are above 3.0 MPa and 0.47,respectively.The optimum preparation conditions for the steel slag porous sound-absorbing materials are as follows:mass fraction of fly ash 50%,waste EPS particles 3.6 g,sintering temperature 1100℃,and sintering time 7.5h,which are determined by considering the properties of the sound-absorbing materials,energy consumption and cost.
基金supported by Opening Foundation of Key Laboratory of New Technology for Construction of Cities in Mountain Area,Ministry of Education,China(LNTCCMA-20210104)This work was also supported by the Natural Science Foundation of China(Grant No.51408113)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140632).
文摘With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic development.This paper proposed a novel eco-friendly sound absorbing structure(NSAS)liner for noise reduction in elevator shafts.The base layer integrated with the shaft walls is a damping gypsum mortarboard,and a rock wool board and a perforated cement mortarboard are used to compose the NSAS.Based on the acoustic impedance theory of porous materials and perforated panels,the sound absorption theory of the NSAS was proposed;the parameter effects of the rock wool board(flow resistivity,porosity,structure factor)and perforated panel(perforated rates,thickness,density,perforated diameter)on NSAS absorption were discussed theoretically for absorption improvement,and experiments were also conducted.Numerical results showed that the perforation rate,the thickness of the perforated plate,and the porosity,flow resistance,and volume density of the rock wool board played a key issue in the absorption performances of the NSAS.Experiments verified the accuracy of the proposed theoretical model.Wideband sound absorption performance of the NSAS at frequencies between 500–1600 Hz was achieved in both numerical analysis and experiments,and the sound absorption coefficient was improved to 0.72 around 1000 Hz after parameter adjustments.The NSAS proposed in this paper can also be made of other renewable materials with preferable structure strength and still has the potential to broaden the absorption bandwidth.It can provide a reference for controlling the elevator shaft noise.
基金sponsored by Natural Science Foundation of Henan under Grant No.222300420498.
文摘In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band.
基金The National Natural Science Foundations of China under contract Nos 41372287 and 41272316the Comprehensive Investigation Plan of Marine Geology Security Engineering under contract No.GZH201100203
文摘An ideal nature system for the study of post-depositional submarine mass changing under wave loading was selected in the intertidal platform of the subaqueous Huanghe River Delta, a delta formed during period from 1964 to 1976 as the Huanghe River discharged into the Bohai Gulf by Diaokou distributary. A road embankment constructed for petroleum recovery on the inter-tidal platform in 1995 induced the essential varieties of hydrodynamic conditions on the both sides of the road. With both sides sharing similarities in (1) initial sedimentary environment, (2) energetic wave loading, (3) differential hydrodynamic conditions in later stages, (4) enough long-range action, and (5) extreme shallow water inter-tidal platforms; the study is representative and feasible as well. Two study sites were selected on each side of the road, and a series of measurements, samplings, laboratory experiments have been carried out, including morphometry, hydrodynamic conditions, sediment properties, granularity composition, and fractal dimension calculation of the topography in the two adjacent areas. It was observed that in the outer zone, where wave loading with high magnitude prevailed, the tidal flat was bumpy and exhibited a high erosion rate and high fractal dimension. Further, the fractal dimension diminished quickly, keeping with the enlarging of calculative square size. However in the inner zone, where the hydrodynamic condition was weak, the tidal fiat was fiat and exhibited a low erosion rate and low fractal dimensions; the fractal dimension diminished with the enlarging of calcu- lative square size. The fractal dimensions in the different hydrodynamic areas equalized increasingly as the calculative square size accreted to threshold, indicating that the hydrodynamic condition plays a significant role in topography construction and submarine delta erosion process. Additionally, the later differentiation of sediment properties, granularity composition, microstructure characteristics, and mineral composition induced by the different hydrodynamic conditions can also contribute to the variation of topography and sea-bed erosion in the two adjacent areas.
基金supported by the High-Tech Research and Development Program(863)of China(No.2011AA06A105)
文摘The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5 MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50%(wt.%), percentage of coal powder of 30%(wt.%), sintering temperature of 1130°C,and sintering time of 6.0 hr, which were determined by analyzing the properties of the sound-absorbing material.
基金The work was supported by the National 863 plan Youth Foundation (820-Q-09).
文摘The physical properties of pattern characteristics for typical Acoustic Sea-bed Profiling Records (ASPRs) in the area of Changjiang Estuary and the East China Sea are analyzed in this paper. Nine pattern characteristics are summarized and it was shown that 9 geological categories can be determined by 4 pattern characteristics. Based on the above analysis, a Bayes-based pattern characteristics classifier for interpretation of ASPRs is developed.
文摘An expert system based on the fuzzy set theory has been developed for geological interpretation of Acoustic Seabed Profiling Records(ASPR). After successively extracting each state of several main pattern characteristics shown on the ASPRs, the similarities between this pattern characteristic-state set and the standard ones corresponding to different geological categories of marine sediments are computed respectively By comparillg these values of sidrilarities, the conclusion of geological classification to the ASPR can be derived.
文摘It has been known that the error of measuring acoustic veloicities of thin sediment layers by the well-known T2-X2 approach is usually untolerable, and that this approach is unavailable in the case where sea-bed is hard because no echo from any subsurface below sea-bottom can be received. Therefore applying the ray-parameter method to thin layers and the refraction method to hard layers need to be considered in an acoustic velocity measurement system composed of a sound source and a towed hydrophone streamer. Some problems of practical importance about the applications of the two methods, such as echo-data processing procedures and error estimations in measuring acoustic veloicities, are discussed, and the effectiveness of theoretical analyses has been verified through computer simulations.
基金supported by the National Natural Science Foundation of China(Nos.11772349,11972354,and 61971412).
文摘As a kind of classical low-frequency sound-absorbing material,the microperforated plate(MPP)has been widely used.Here,we inspired by the sound absorption mechanism of the MPP,a spiral metasurface(SM)is designed and the analytical solution of acoustic impedance and sound absorption coefficient are obtained.The relationship between the sound absorption properties of the MPP and the SM with their own structures is systematically studied,and the analytical solutions are used to optimise the structure.It is concluded that the MPP and the SM of the same thickness achieve effective absorption in the frequency range between 390-900 Hz and 1920-4266 Hz,with a total thickness less than 1/6 of the wavelength.Meanwhile,the numerical calculation shows that the MPP and SM can match well with the background medium in the effective rang.Our study provides new insights into the design methods of sound-absorbing materials and is potentially suitable for many acoustic engineering applications.
文摘This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0.In the present study,a metal reflector and reflectors made of three different sound-absorbing materials(grass wool and polyurethane foam)were employed,and the reflector size was varied.Acoustic measurement is carried out to obtain the acoustic characteristics such as frequency,amplitude of screech tone and overall sound pressure level(OASPL).A high-quality schlieren optical system is used to visualize the detailed structure of supersonic jet.The results obtained show that the acoustic characteristics of supersonic jet noise are strongly dependent upon the jet pressure ratio and the reflector size.It is also found that the reflector with sound-absorbing material reduces the screech tone amplitude by about 5-13dB and the overall sound pressure levels by about 2-5dB,compared with those of the metal reflector.
基金the National 863 Plan Youth Foundation of China !(820-Q-09).
文摘A computer-based pattern recognition systems has been developed for geological interpretation of Acoustic Sea-bed Profiling Records. Based on practical experience accumu- lated by specialists, the main pattern characteristics of Acoustic Sea-bed Profiling Records (ASPRs) corresponding to typical geological categories of marine sediment layers in the area of the East China Sea have been expressed altogether in 9 aspects, and a dynamic reasoning expert system designed correspondingly. Starting from an initial premise Characteristic and makes the next step reasoning until the final conclusion (i.e. which geological category the sediment layer belongs to.) is derived, in the mean time, for quantitatively estimating the correctness of the final conclusions, the so-called certainty factor is calculated.
文摘Noise-reduction seats have been successfully used in concert halls, theaters, and other places that reduce noise. In this study, a new noise-reduction seat design was proposed for high-speed trains, which have unique interior noise spectral characteristics. First, before the noisereduction seat models were fabricated, the parameters of high-performance sound-absorbing materials and perforated plates were selected by conducting a standing-wave tube test. The sound-absorption effects of the noisereduction seats and normal seats were investigated and compared in a reverberation chamber. Test results showed that, compared with normal seats, the noise-reduction seats obtained a significantly improved sound-absorption coefficient in the entire frequency band. Furthermore, the test results were used to establish a simulation model for calculation, and the simulation results proved that the noise-reduction seats substantially reduced the noise in an entire train car. Finally, the noise-reduction seats were fabricated and installed in a full train car of an actual highspeed train. The test results showed that, compared with the normal seats, the noise-reduction seats decreased the noise level at a standard point in the passenger car by 1.5 dB. Therefore, the noise-reduction seats are effective in noise reduction.