Cardiac current source reconstruction is investigated by a fast greedy sparse(FGS) method applied to simulated and real magnetocardiography(MCG) data measured using 61-channel superconducting quantum interference devi...Cardiac current source reconstruction is investigated by a fast greedy sparse(FGS) method applied to simulated and real magnetocardiography(MCG) data measured using 61-channel superconducting quantum interference device. The approach reduces the size of the lead field matrix based on a priori knowledge of dipolar magnetic field map. Consequently, the computational demands and the accuracy of sparse source reconstruction are improved simultaneously. The simulation results demonstrate that the FGS method is capable of reconstructing sparse equivalent current sources using the magnetic field data generated by a single current source with varying orientation or multiple current sources generated randomly. In addition, we analyze the cardiac current source reconstructed with real MCG data at typical instants and discuss the electrical excitation conduction during the QRS complex based on moving sparse source imaging.展开更多
A two-stage source reconstruction algorithm for bioluminescence tomography (BLT) is developed using hybrid finite element method (FEM). The proposed algorithm takes full advantages of linear and quadratic FEMs, which ...A two-stage source reconstruction algorithm for bioluminescence tomography (BLT) is developed using hybrid finite element method (FEM). The proposed algorithm takes full advantages of linear and quadratic FEMs, which can be used to localize and quantify bioluminescent source accurately. In the first stage, a large permissible region is roughly determined and then iteratively evolved to reduce matrix dimension using efficient linear FEM. In the final stage, high-convergence quadratic FEM is applied to improve reconstruction result. Both numerical simulation and physical experiment are performed to evaluate the proposed algorithm. The relevant results demonstrate that quantitative reconstruction can be well achieved in terms of computation efficiency, source position, power density, and total power when compared with previous studies.展开更多
Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs t...Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs to be stored,and then accessed to compute the correlation with the backward-propagated wavefield.Boundary-value methods reconstruct the source wavefield using saved boundary wavefields and can significantly reduce the storage requirements.However,the existing boundary-value methods are based on the explicit finite-difference(FD)approximations of the spatial derivatives.Implicit FD methods exhibit greater accuracy and thus allow for a smaller operator length.We develop two(an accuracy-preserving and a memory-efficient)wavefield reconstruction schemes based on an implicit staggered-grid FD(SFD)operator.The former uses boundary wavefields at M layers of grid points and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield for a(2M+2)th-order implicit SFD operator.The latter applies boundary wavefields at N layers of grid points,a linear combination of wavefields at M–N layers of grid points,and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield(0≤N<M).The required memory of accuracy-preserving and memory-efficient schemes is(M+1)/M and(N+2)/M times,respectively,that of the explicit reconstruction scheme.Numerical results reveal that the accuracy-preserving scheme can achieve accurate reconstruction at the cost of storage.The memory-efficient scheme with N=2 can obtain plausible reconstructed wavefields and images,and the storage amount is 4/(M+1)of the accuracy-preserving scheme.展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
A multichannel matching pursuit(MMP)algorithm is proposed to decompose the one-dimensional multichannel non-stationary magnetoencephalography(MEG)signal at a single-trial level.The single-channel matching pursuit...A multichannel matching pursuit(MMP)algorithm is proposed to decompose the one-dimensional multichannel non-stationary magnetoencephalography(MEG)signal at a single-trial level.The single-channel matching pursuit(MP)linearly decomposes the signal into a set of Gabor atoms,which are adaptively chosen from an overcomplete dictionary with good time-frequency characters.The MMP is the extension of the MP,which represents multichannel signals using linear combination of Gabor atoms with the same occurrence,frequency,phase,and time width,but varying amplitude in all channels.The results demonstrate that the MMP can optimally reconstruct the original signal and automatically remove artifact noises.Moreover,the coherence between the 3D source reconstruction and the prior knowledge of psychology further suggests that the MMP is effective in MEG single-trial processing.展开更多
A new method for the imaging of cardiac electrical activity in patients with complete right bundle branch block (CRBBB) or complete left bundle branch block (CLBBB) is investigated using magnetocardiographic recor...A new method for the imaging of cardiac electrical activity in patients with complete right bundle branch block (CRBBB) or complete left bundle branch block (CLBBB) is investigated using magnetocardiographic recordings of the surface of the body. This is based on the assumption that an equivalent single-current dipole moves along the unblocked bundle branch, whose position in the measurement plane is expressed in terms of the maximum and minimum, as well as the maximum gradient value of the measured magnetic field. The trajectory of the moving dipole on the measurement plane is indicative of theexcitation conduction of the CRBBB or CLBBB subject during ventricular depolarization and repolarization, which is deduced by comparing each change between the dipole moment and the maximum current density in a corresponding pseudo-current density map. In summary, this method can distinguish CRBBB from CLBBB subjects by means of the dipole depth and two dipole moment components. The possibility of visualizing the excitation conduction in a CRBBB or CLBBB subject during ventricular depolarization and repolarization is then discussed.展开更多
The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT...The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT). We propose a region stepwise reconstruction method in CW-DOT scheme for reconstructing the background absorption and reduced scattering coefficients of the two-layered slab sample with the known geometric information. According to the relation between the thickness of the top layer and source– detector separation, the conventional measurement data are divided into two groups and are employed to reconstruct the top and bottom background optical properties, respectively. The numerical simulation results demonstrate that the proposed method can reconstruct the background optical properties of two-layered slab sample effectively. The region-of-interest reconstruction results are better than those of the conventional simultaneous reconstruction method.展开更多
Recently, Sandia Laboratories developed a neutron scatter camera to detect special nuclear materials. This camera exhibits the following advantages: high efficiency, direction discrimination, neutron-gamma discriminat...Recently, Sandia Laboratories developed a neutron scatter camera to detect special nuclear materials. This camera exhibits the following advantages: high efficiency, direction discrimination, neutron-gamma discrimination ability, and wide field of view. However, using the direct projection method, the angular resolution of this camera is limited by uncertainties in the energies estimated from pulse height and time of flight measurements. In this study, we established an eight-element neutron scatter camera and conducted the experiment with a ^(252)Cf neutron source. The results show that it has an angular resolution better than 8°(1s) and a detection efficiency of approximately 2.6′10-4. Using maximum likelihood expectation maximization method, the image artifact was eliminated, and the angular resolution was improved. We proposed an average scattering angle method to estimate the scattering energy of neutrons and Compton gamma rays. As such, we can obtain a recognizable image and energy spectrum of the source with some degradation of energy and image resolutions. Finally, a newly measured light response function based on the MPD^(-4) device was used for image reconstruction. Although we did not obtain a better result than that of the standard light response function, we have observed the effects of light response function on image reconstruction.展开更多
基金supported by the National Natural Science Foundation of China(60771030)the National HighTechnology Research and Development Program of China(2008AA02Z308)+2 种基金the Shanghai Science and Technology Development Foundation(08JC1421800)Shanghai Leading Academic Discipline Project(B004)the Open Project of State Key Laboratory of Function Materials for Information(Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences)
文摘Cardiac current source reconstruction is investigated by a fast greedy sparse(FGS) method applied to simulated and real magnetocardiography(MCG) data measured using 61-channel superconducting quantum interference device. The approach reduces the size of the lead field matrix based on a priori knowledge of dipolar magnetic field map. Consequently, the computational demands and the accuracy of sparse source reconstruction are improved simultaneously. The simulation results demonstrate that the FGS method is capable of reconstructing sparse equivalent current sources using the magnetic field data generated by a single current source with varying orientation or multiple current sources generated randomly. In addition, we analyze the cardiac current source reconstructed with real MCG data at typical instants and discuss the electrical excitation conduction during the QRS complex based on moving sparse source imaging.
基金supported by National Basic Research Program of China (973 Program) (No. 2011CB707702)National Natural Science Foundation of China (Nos. 81090272, 81000632, and 30900334)+1 种基金the Shaanxi Provincial Natural Science Foundation (No. 2009JQ8018)the Fundamental Research Funds for the Central Universities
文摘A two-stage source reconstruction algorithm for bioluminescence tomography (BLT) is developed using hybrid finite element method (FEM). The proposed algorithm takes full advantages of linear and quadratic FEMs, which can be used to localize and quantify bioluminescent source accurately. In the first stage, a large permissible region is roughly determined and then iteratively evolved to reduce matrix dimension using efficient linear FEM. In the final stage, high-convergence quadratic FEM is applied to improve reconstruction result. Both numerical simulation and physical experiment are performed to evaluate the proposed algorithm. The relevant results demonstrate that quantitative reconstruction can be well achieved in terms of computation efficiency, source position, power density, and total power when compared with previous studies.
基金partially supported by National Key R&D Program of China(2021YFA0716902)the National Natural Science Foundation of China(42174156)the Fundamental Research Funds for the Central Universities,CHD(300102261107)。
文摘Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs to be stored,and then accessed to compute the correlation with the backward-propagated wavefield.Boundary-value methods reconstruct the source wavefield using saved boundary wavefields and can significantly reduce the storage requirements.However,the existing boundary-value methods are based on the explicit finite-difference(FD)approximations of the spatial derivatives.Implicit FD methods exhibit greater accuracy and thus allow for a smaller operator length.We develop two(an accuracy-preserving and a memory-efficient)wavefield reconstruction schemes based on an implicit staggered-grid FD(SFD)operator.The former uses boundary wavefields at M layers of grid points and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield for a(2M+2)th-order implicit SFD operator.The latter applies boundary wavefields at N layers of grid points,a linear combination of wavefields at M–N layers of grid points,and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield(0≤N<M).The required memory of accuracy-preserving and memory-efficient schemes is(M+1)/M and(N+2)/M times,respectively,that of the explicit reconstruction scheme.Numerical results reveal that the accuracy-preserving scheme can achieve accurate reconstruction at the cost of storage.The memory-efficient scheme with N=2 can obtain plausible reconstructed wavefields and images,and the storage amount is 4/(M+1)of the accuracy-preserving scheme.
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.
基金The National Natural Science Foundation of China(No.30900356,81071135)the National High Technology Research and Development Program of China(863Program)(No.2008AA02Z410)
文摘A multichannel matching pursuit(MMP)algorithm is proposed to decompose the one-dimensional multichannel non-stationary magnetoencephalography(MEG)signal at a single-trial level.The single-channel matching pursuit(MP)linearly decomposes the signal into a set of Gabor atoms,which are adaptively chosen from an overcomplete dictionary with good time-frequency characters.The MMP is the extension of the MP,which represents multichannel signals using linear combination of Gabor atoms with the same occurrence,frequency,phase,and time width,but varying amplitude in all channels.The results demonstrate that the MMP can optimally reconstruct the original signal and automatically remove artifact noises.Moreover,the coherence between the 3D source reconstruction and the prior knowledge of psychology further suggests that the MMP is effective in MEG single-trial processing.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.60771030)the National High-Technology Research and DevelopmentProgram of China(Grant No.2008AA02Z308)+3 种基金the Shanghai Science and Technology Development Foundation(Grant No.08JC1421800)the Shanghai Leading Academic Discipline Project(Grant No.B004)the Open Project of State Key Laboratory of Function Materials for Information(Shanghai Instituteof Microsystem and Information Technology,Chinese Academy of Sciences)the Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai(Grant No.13DZ2272200-2)
文摘A new method for the imaging of cardiac electrical activity in patients with complete right bundle branch block (CRBBB) or complete left bundle branch block (CLBBB) is investigated using magnetocardiographic recordings of the surface of the body. This is based on the assumption that an equivalent single-current dipole moves along the unblocked bundle branch, whose position in the measurement plane is expressed in terms of the maximum and minimum, as well as the maximum gradient value of the measured magnetic field. The trajectory of the moving dipole on the measurement plane is indicative of theexcitation conduction of the CRBBB or CLBBB subject during ventricular depolarization and repolarization, which is deduced by comparing each change between the dipole moment and the maximum current density in a corresponding pseudo-current density map. In summary, this method can distinguish CRBBB from CLBBB subjects by means of the dipole depth and two dipole moment components. The possibility of visualizing the excitation conduction in a CRBBB or CLBBB subject during ventricular depolarization and repolarization is then discussed.
基金supported by the National Natural Science Foundation of China(Nos.81271618 and 81371602)the Tianjin Municipal Government of China(Nos.12JCQNJC09400 and 13JCZDJC28000)the Research Fund for the Doctoral Program of Higher Education of China(No.20120032110056)
文摘The accuracy of the background optical properties has a considerable effect on the quality of reconstructed images in near-infrared functional brain imaging based on continuous wave diffuse optical tomography(CW-DOT). We propose a region stepwise reconstruction method in CW-DOT scheme for reconstructing the background absorption and reduced scattering coefficients of the two-layered slab sample with the known geometric information. According to the relation between the thickness of the top layer and source– detector separation, the conventional measurement data are divided into two groups and are employed to reconstruct the top and bottom background optical properties, respectively. The numerical simulation results demonstrate that the proposed method can reconstruct the background optical properties of two-layered slab sample effectively. The region-of-interest reconstruction results are better than those of the conventional simultaneous reconstruction method.
基金supported by the National Natural Science Fundation of China(Grant Nos.1110510611375144&11275153)
文摘Recently, Sandia Laboratories developed a neutron scatter camera to detect special nuclear materials. This camera exhibits the following advantages: high efficiency, direction discrimination, neutron-gamma discrimination ability, and wide field of view. However, using the direct projection method, the angular resolution of this camera is limited by uncertainties in the energies estimated from pulse height and time of flight measurements. In this study, we established an eight-element neutron scatter camera and conducted the experiment with a ^(252)Cf neutron source. The results show that it has an angular resolution better than 8°(1s) and a detection efficiency of approximately 2.6′10-4. Using maximum likelihood expectation maximization method, the image artifact was eliminated, and the angular resolution was improved. We proposed an average scattering angle method to estimate the scattering energy of neutrons and Compton gamma rays. As such, we can obtain a recognizable image and energy spectrum of the source with some degradation of energy and image resolutions. Finally, a newly measured light response function based on the MPD^(-4) device was used for image reconstruction. Although we did not obtain a better result than that of the standard light response function, we have observed the effects of light response function on image reconstruction.