Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as ...Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as they tend to be laborious,time-consuming,or technically difficult.Disinfection byproducts(DBPs)are a family of well-known secondary pollutants formed by the reactions of chemical disinfectants with DBP precursors during water disinfection treatment.Since DBP precursors have various origins(e.g.,natural,domestic,industrial,and agricultural sources),and since the formation of DBPs from different precursors in the presence of specific disinfectants is distinctive,we argue that DBPs and DBP precursors can serve as alternative indicators to assess the contamination in water sources and identify pollution origins.After providing a retrospective of the origins of DBPs and DBP precursors,as well as the specific formation patterns of DBPs from different precursors,this article presents an overview of the impacts of various natural and anthropogenic factors on DBPs and DBP precursors in drinking water sources.In practice,the DBPs(i.e.,their concentration and speciation)originally present in source water and the DBP precursors determined using DBP formation potential tests—in which water samples are dosed with a stoichiometric excess of specific disinfectants in order to maximize DBP formation under certain reaction conditions—can be considered as alternative metrics.When jointly used with other water quality parameters(e.g.,dissolved organic carbon,dissolved organic nitrogen,fluorescence,and molecular weight distribution)and specific contaminants of emerging concern(e.g.,certain pharmaceuticals and personal care products),DBPs and DBP precursors in drinking water sources can provide a more comprehensive picture of water pollution for better managing water resources and ensuring human health.展开更多
The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is u...The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.展开更多
Widespread changes to forested watersheds affected by the mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic across western North America raised concerns about the effects of this climate-induced disturba...Widespread changes to forested watersheds affected by the mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic across western North America raised concerns about the effects of this climate-induced disturbance on drinking water and natural resources. Effective communication and knowledge exchange across scientists and stakeholders (i.e., drinking water managers) is essential for constructively responding to such landscape scale disturbances, providing improved adaptive capacity through knowledge sharing. An assessment of stakeholder knowledge levels, information needs, primary concerns, and suggested communication strategies were conducted via an online elicitation survey and World Science Café workshops. Knowledge levels, assessed via a survey of local water managers and experts, were relatively low with approximately half of the respondents reporting little to no knowledge of the effects of mountain pine beetle on drinking water quality and quantity, thereby indicating limited knowledge exchange between scientists and drinking water stakeholders. Increased accessibility and dissemination of research findings pertinent to the mountain pine beetle epidemic’s effects on drinking water quality and quantity is necessary for natural resource management. Recommendations for improved communication among scientists and drinking water stakeholders in particular and forest health in general include dispersal of non-academic research summaries, information exchange through existing media and community resources, demonstration projects, and information clearinghouses. This information provides a better understanding of the challenges, concerns, and first-hand experience of stakeholders of a landscape disturbance issue to apply this knowledge to enhance land management practice and how researchers on this overall project enhanced science communication efforts.展开更多
Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant im...Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.展开更多
Organochlorine contaminants, such as triclosan (TCS), are present in major water sources across the United States. These antimicrobial compounds are widely used as multipurpose ingredients in everyday consumer product...Organochlorine contaminants, such as triclosan (TCS), are present in major water sources across the United States. These antimicrobial compounds are widely used as multipurpose ingredients in everyday consumer products. They can be ingested or absorbed through the skin and are found in human blood, breast milk, and urine samples. Studies have shown that the increased use of antimicrobial agents leads to their presence and persistence in the ecosystem, particularly in soil and watersheds. Many studies have highlighted emerging concerns associated with the overuse of TCS, including dermal irritations, a higher incidence of antibacterial-related allergies, microbial resistance, disruptions in the endocrine system, altered thyroid hormone activity, metabolism, and tumor metastasis and growth. Organochlorine contaminant exposures play a role in inflammatory responsiveness, and any unwarranted innate response could lead to adverse outcomes. The capacity of TCS and other organochlorine contaminants to induce inflammation, resulting in persistent and chronic inflammation, is linked to various pathologies, such as cardiovascular disease and several types of cancers. Chronic inflammation presents a severe consequence of exposure to these antimicrobial agents, as any changes could result in the loss of immune competence. Organochlorine contaminant levels were established by the United States Environmental Protection Agency (EPA) in 2019-2020 and have consistently increased in response to the novel coronavirus (nCoV) (COVID-19) pandemic. Our previous research examined the overuse of products containing triclosan (TCS), which led to an increase in total trihalomethane (TTHM) levels affecting the quality of our water supply. We also investigated the impact of the FDA ban that now requires pre-market approval. To comprehend the consequences of excessive antimicrobial use on water quality, we conducted an analysis of the levels of total trichloromethane (chloroform), a byproduct of free chlorine added to TCS, in primary water sources in metropolitan areas across the United States in 2019-2020. We repeated this analysis after the peak of the COVID-19 pandemic in 2021-2022 to examine its correlation with organochlorine exposure. Our study found that the COVID-19 pandemic, along with the increased use of antimicrobial products, has significantly raised the levels of total trihalomethanes compared to those reported in water quality reports from 2019-2020, in contrast to the reports from 2021-2022.展开更多
Sairme mineral water, one of the famous mineral waters in Georgia, is renowned for its exceptional healing properties. The distinctiveness and therapeutic benefits of the naturally sourced mineral water, known as “Sa...Sairme mineral water, one of the famous mineral waters in Georgia, is renowned for its exceptional healing properties. The distinctiveness and therapeutic benefits of the naturally sourced mineral water, known as “Sairme”, stem from its rich array of microelements, notably including iron and manganese. Since 1948, the bottling of Sairme mineral water has been a prominent activity. Named after the Sairme deposit, this mineral water is packaged in various formats to cater to diverse consumer preferences. The bottling process involves transporting the mineral water from wells to the bottling plant through pipelines. Prior to bottling, the mineral water undergoes meticulous processing stages in adherence to current Georgian and international regulations. This process ensures that the concentration of trace elements in the bottled water is minimized, maintaining its purity and quality. Given the importance of preserving the microelements present in bottled mineral water, our research is dedicated to optimizing the technological process. Our objective is to safeguard the valuable microelements while ensuring the highest standards of quality and safety in the final product.展开更多
This study aims to analyze the spatio-temporal variability of the characteristics of water resources in the Diani watershed,located in the southeast of the Republic of Guinea.The objective is to assess the availabilit...This study aims to analyze the spatio-temporal variability of the characteristics of water resources in the Diani watershed,located in the southeast of the Republic of Guinea.The objective is to assess the availability and quantity of water for sustainable management of this essential resource.The results obtained show a slight variability of hydro-climatic parameters.The most remarkable wet periods by their intensity of(1982-1998)and(2005-2012)are moderate and that of 1986-1990 is extremely severe during which they are felt on all the stations of the South of Guinea.In addition,the dry years,the end of 1970 and 1980 to 1987 recognized by the WMO(World Meteorological Organization)as drought years were highlighted in the Diani watershed in the South of the Republic of Guinea.展开更多
Drinking good quality water is essential for better health. It is therefore essential to assess the radiological quality of all water consumed in the District of Abidjan in order to prevent related hazards. Thus, the ...Drinking good quality water is essential for better health. It is therefore essential to assess the radiological quality of all water consumed in the District of Abidjan in order to prevent related hazards. Thus, the objective of this study was to assess the risk of cancer due to the ingestion of alpha and beta emitting radionuclides in the different types of water consumed in the region. A total of 63 water samples with 43 tap water samples, 5 bottled mineral water and 15 sachet water samples was collected and taken to GAEC laboratory for analysis. The low background Gas-less Automatic Alpha/Beta counting system (Canberra iMatic<sup>TM</sup>) was used to determine alpha and beta activity concentrations. Activity concentrations of both gross alpha and gross beta obtained in water sample were respectively lower than the WHO recommended limits of 0.1 Bq/l and 1 Bq/l. Also, the annual effective dose and total equivalent effective dose found in mineral bottled water samples were higher than in other types of water. The assessment of radiological lifetime risk has shown values of cancer risk due to ingestion alpha and beta emitters lower than recommended limit. These results indicate that there is no health hazard associated to consumption of water in the District of Abidjan.展开更多
The interdependency among water, food, and energy (WEF) in the GCC countries is strongly and closely interlinked, and is intensifying as demand for resources increases with population growth and changing consumption p...The interdependency among water, food, and energy (WEF) in the GCC countries is strongly and closely interlinked, and is intensifying as demand for resources increases with population growth and changing consumption patterns, and are expected to be further compounded by the impacts of climate change. Therefore, integrated management of the three sectors is crucial to reduce trade-offs and build synergies among them. This paper presents a comprehensive framework to assess the WEF nexus in Kuwait as a representative case for the GCC countries. The framework consists of three main steps: 1) evaluating the influence of socio-economic development and climate change on water, energy, and food resources;2) generating scenario-based projections;and 3) conducting an extensive quantitative nexus analysis. The WEF interlinkages in Kuwait are modelled quantitatively using the Q-Nexus model, and current critical interdependencies are evaluated. Then, various WEF-Nexus scenarios were conducted for the year 2035 to explore the effects of management interventions in one sector on the other two sectors. The main findings are that per capita municipal water consumption is a major influencer on the WEF-nexus due to the heavy reliance on thermal desalination in municipal water supply in Kuwait, which is attributed to its energy intensity, financial cost, GHGs emissions, and environmental impacts on the marine and air environments. To reduce WEF trade-offs, mitigate risks, and build synergies among the three sectors, it is important to shift the current policy focus on supply-side management approach to the demand-side management and efficiency approaches.展开更多
Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as...Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.展开更多
Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined p...Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined pressures: chemical, hydro-morphological, thermal or trophic, affect and disrupt the functioning of aquatic organisms. The objective of this study was to assess the main human pressures influencing the surface water resources of the Kamsar sub-prefecture, in order to propose mitigation measures. The following methodological approach was adopted: 1) Survey of managers and analysis records;2) Survey of stakeholders;3) Assessment of the effect of human activities on surface water resources;4) Data processing;5) Corrective measures. The survey farmers working near aquatic environments, revealed a low use of chemical substances, in particular 3 to 11 kg of fertilizer and 0 to 3 boxes of herbicide on fields of 40 m2 to 2 ha. Some physico-chemical parameters have been determined: Temperature (28.5˚C, 23.7˚C, 22.8˚C, 21.3˚C, 21.6˚C), Salinity (26.9‰, 21.9‰, 21.5‰, 15‰, 15.3‰) and Turbidity (21.3 UTN, 19.3 UTN, 17.8 UTN, 16.7 UTN, 17 UTN). These values show a fluctuation in the environmental parameters of aquatic ecosystems, which constitutes an obstacle to the development and survival of the resources.展开更多
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi...Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.展开更多
As part of its efforts to promote a sustainable and high-quality development,China has pledged to reduce water consumption and create a water-efficient society.On the basis of identifying the institutional root causes...As part of its efforts to promote a sustainable and high-quality development,China has pledged to reduce water consumption and create a water-efficient society.On the basis of identifying the institutional root causes of excessive capital allocation and excessive water consumption in China’s water-intensive industrial sectors,this study elaborates how the national water-efficient cities assessment contributes to optimized capital allocation.Our research shows that national water-efficient cities assessment has motivated local governments to compete for water efficiency.To conserve water,local governments regulated the entry and exit of water-intensive enterprises,discouraged excessive investments in water-intensive sectors,and phased out obsolete water-intensive capacities within their jurisdictions.This approach has resulted in mutually beneficial outcomes,including improved allocation of capital,enhanced water efficiency,and reduced emissions.This paper offers policy recommendations for establishing a water-efficient society throughout the 14^(th) Five-Year Plan(2021-2025)period by presenting empirical evidence on the policy effects of resource efficiency evaluation.展开更多
At present,the major problems facing the water resource environment worldwide include water pollution,water resource shortage,and water ecosystem degradation.The discharge of industrial wastewater,agricultural non-poi...At present,the major problems facing the water resource environment worldwide include water pollution,water resource shortage,and water ecosystem degradation.The discharge of industrial wastewater,agricultural non-point source pollution,and the discharge of urban sewage lead to a serious decline in water quality,which directly affects the safety of human drinking water and the living environment of aquatic organisms.Additionally,the unbalanced distribution and excessive exploitation of water resources lead to the problem of water shortage in many areas,which then leads to social and economic contradictions and ecological crises.In terms of ecosystems,the phenomena of water ecological degradation and reduction of biodiversity are increasingly obvious,and the carrying capacity of aquatic ecosystems are gradually declining.This paper aims to analyze the natural,social,and economic factors affecting the water resource environment,and propose effective strategies to protect the water ecology.To provide a theoretical basis and practical guidance for the sustainable utilization of water resources and the long-term development of the water ecosystem.展开更多
This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technol...This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technological advances since the 19th century. From 1900 to 2010, temperatures in the Midwest rose by an average of 1.5 degrees Fahrenheit, which would also lead to an increase in greenhouse gas emissions. Precipitation is also expected to increase due to increased storm activity and changes in regional weather patterns. This paper explores the impact of these changes on urban and agricultural areas. In urban areas such as the city of Chicago, runoff from the increasing impervious surface areas poses challenges to the drainage system, and agriculture areas are challenged by soil erosion, nutrient loss, and fewer planting days due to excessive rainfall. Sustainable solutions such as no-till agriculture and the creation of grassland zones are discussed. Using historical data, recent climate studies and projections, the paper Outlines ways to enhance the Midwest’s ecology and resilience to climate change.展开更多
The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disas...The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.展开更多
The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential po...The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential pollution sources. In this study, 99 water samples were collected from a river in a typical agricultural city of Anhui Province in eastern China, and these samples were analyzed in terms of pH, electrical conductivity, and the concentrations of F-, Cl-, SO42-, Na+, K+, Mg2+, Ca2+, As, Cr, Cu, Zn, and Pb. Cluster analysis, co-occurrence network analysis, and principal component analysis/factor analysis were conducted to qualitatively identify the potential sources of river water pollution in the study area. An absolute principal component score-multiple linear regression receptor model was used to quantitatively evaluate the contribution of each source to water quality parameters. The results showed that all observed water quality indices met the quality criteria specified in the Chinese drinking water standards, except for pH, ρ(F-), ρ(SO42-), and ρ(As). The heat map showed that the frequent recharge of pollutants from the tributaries during the wet season was the main reason for the deterioration of water quality. Five sources of river water pollution were identified, and their contribution ratios in a descending order were as follows: the geogenic process (24%) > agricultural activities (21%) > poultry farming sources (17%) > domestic pollution (9%) > transportation pollution (5%). Therefore, controlling pollution from agricultural activities, strengthening the regulation of livestock farming, and improving the sewage network are the recommended strategies for improving the quality of surface water resources in this area.展开更多
Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be co...Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be controlled by reducing the amount of fertilizer applied,but pollution caused by soil and water erosion in hilly areas can only be controlled by conservation forests.The catchment area around Fushi Reservoir was selected as a test site and mechanisms of N loss from a vertical spatial perspective through field observations were determined.The main N losses occurred from June to September,accounting for 85.9-95.9%of the annual loss,with the losses in June and July accounting for 46.0%of the total,and in August and September for 41.9%.The N leakage from the water source area was effectively reduced by 38.2%through the optimization of the stand structure of the conservation forests.Establishing well-structured forests for water conservation is crucial to ensure the security of drinking water.This preliminary research lays the foundation for revealing then loss mechanisms in water source areas and improving the control of non-point source pollution in these areas.展开更多
Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and wa...Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.展开更多
As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC ae...As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.展开更多
基金supported by the National Natural Science Foundation of China(52325001,52170009,and 52091542)the National Key Research and Development Program of China(2021YFC3200700)+3 种基金the Program of Shanghai Academic Research Leader,China(21XD1424000)the International Cooperation Project of Shanghai Science and Technology Commission(20230714100)the Key-Area Research and Development Program of Guangdong Province(2020B1111350001)Tongji University Youth 100 Program.
文摘Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as they tend to be laborious,time-consuming,or technically difficult.Disinfection byproducts(DBPs)are a family of well-known secondary pollutants formed by the reactions of chemical disinfectants with DBP precursors during water disinfection treatment.Since DBP precursors have various origins(e.g.,natural,domestic,industrial,and agricultural sources),and since the formation of DBPs from different precursors in the presence of specific disinfectants is distinctive,we argue that DBPs and DBP precursors can serve as alternative indicators to assess the contamination in water sources and identify pollution origins.After providing a retrospective of the origins of DBPs and DBP precursors,as well as the specific formation patterns of DBPs from different precursors,this article presents an overview of the impacts of various natural and anthropogenic factors on DBPs and DBP precursors in drinking water sources.In practice,the DBPs(i.e.,their concentration and speciation)originally present in source water and the DBP precursors determined using DBP formation potential tests—in which water samples are dosed with a stoichiometric excess of specific disinfectants in order to maximize DBP formation under certain reaction conditions—can be considered as alternative metrics.When jointly used with other water quality parameters(e.g.,dissolved organic carbon,dissolved organic nitrogen,fluorescence,and molecular weight distribution)and specific contaminants of emerging concern(e.g.,certain pharmaceuticals and personal care products),DBPs and DBP precursors in drinking water sources can provide a more comprehensive picture of water pollution for better managing water resources and ensuring human health.
基金supported by the National Natural Science Foundation of China(42161007)the Scientific Research Program for Higher Education Institutions of Gansu Province(2021B-081)the Natural Science Foundation of Gansu Province(22JR5RA074).
文摘The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.
文摘Widespread changes to forested watersheds affected by the mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic across western North America raised concerns about the effects of this climate-induced disturbance on drinking water and natural resources. Effective communication and knowledge exchange across scientists and stakeholders (i.e., drinking water managers) is essential for constructively responding to such landscape scale disturbances, providing improved adaptive capacity through knowledge sharing. An assessment of stakeholder knowledge levels, information needs, primary concerns, and suggested communication strategies were conducted via an online elicitation survey and World Science Café workshops. Knowledge levels, assessed via a survey of local water managers and experts, were relatively low with approximately half of the respondents reporting little to no knowledge of the effects of mountain pine beetle on drinking water quality and quantity, thereby indicating limited knowledge exchange between scientists and drinking water stakeholders. Increased accessibility and dissemination of research findings pertinent to the mountain pine beetle epidemic’s effects on drinking water quality and quantity is necessary for natural resource management. Recommendations for improved communication among scientists and drinking water stakeholders in particular and forest health in general include dispersal of non-academic research summaries, information exchange through existing media and community resources, demonstration projects, and information clearinghouses. This information provides a better understanding of the challenges, concerns, and first-hand experience of stakeholders of a landscape disturbance issue to apply this knowledge to enhance land management practice and how researchers on this overall project enhanced science communication efforts.
文摘Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.
文摘Organochlorine contaminants, such as triclosan (TCS), are present in major water sources across the United States. These antimicrobial compounds are widely used as multipurpose ingredients in everyday consumer products. They can be ingested or absorbed through the skin and are found in human blood, breast milk, and urine samples. Studies have shown that the increased use of antimicrobial agents leads to their presence and persistence in the ecosystem, particularly in soil and watersheds. Many studies have highlighted emerging concerns associated with the overuse of TCS, including dermal irritations, a higher incidence of antibacterial-related allergies, microbial resistance, disruptions in the endocrine system, altered thyroid hormone activity, metabolism, and tumor metastasis and growth. Organochlorine contaminant exposures play a role in inflammatory responsiveness, and any unwarranted innate response could lead to adverse outcomes. The capacity of TCS and other organochlorine contaminants to induce inflammation, resulting in persistent and chronic inflammation, is linked to various pathologies, such as cardiovascular disease and several types of cancers. Chronic inflammation presents a severe consequence of exposure to these antimicrobial agents, as any changes could result in the loss of immune competence. Organochlorine contaminant levels were established by the United States Environmental Protection Agency (EPA) in 2019-2020 and have consistently increased in response to the novel coronavirus (nCoV) (COVID-19) pandemic. Our previous research examined the overuse of products containing triclosan (TCS), which led to an increase in total trihalomethane (TTHM) levels affecting the quality of our water supply. We also investigated the impact of the FDA ban that now requires pre-market approval. To comprehend the consequences of excessive antimicrobial use on water quality, we conducted an analysis of the levels of total trichloromethane (chloroform), a byproduct of free chlorine added to TCS, in primary water sources in metropolitan areas across the United States in 2019-2020. We repeated this analysis after the peak of the COVID-19 pandemic in 2021-2022 to examine its correlation with organochlorine exposure. Our study found that the COVID-19 pandemic, along with the increased use of antimicrobial products, has significantly raised the levels of total trihalomethanes compared to those reported in water quality reports from 2019-2020, in contrast to the reports from 2021-2022.
文摘Sairme mineral water, one of the famous mineral waters in Georgia, is renowned for its exceptional healing properties. The distinctiveness and therapeutic benefits of the naturally sourced mineral water, known as “Sairme”, stem from its rich array of microelements, notably including iron and manganese. Since 1948, the bottling of Sairme mineral water has been a prominent activity. Named after the Sairme deposit, this mineral water is packaged in various formats to cater to diverse consumer preferences. The bottling process involves transporting the mineral water from wells to the bottling plant through pipelines. Prior to bottling, the mineral water undergoes meticulous processing stages in adherence to current Georgian and international regulations. This process ensures that the concentration of trace elements in the bottled water is minimized, maintaining its purity and quality. Given the importance of preserving the microelements present in bottled mineral water, our research is dedicated to optimizing the technological process. Our objective is to safeguard the valuable microelements while ensuring the highest standards of quality and safety in the final product.
文摘This study aims to analyze the spatio-temporal variability of the characteristics of water resources in the Diani watershed,located in the southeast of the Republic of Guinea.The objective is to assess the availability and quantity of water for sustainable management of this essential resource.The results obtained show a slight variability of hydro-climatic parameters.The most remarkable wet periods by their intensity of(1982-1998)and(2005-2012)are moderate and that of 1986-1990 is extremely severe during which they are felt on all the stations of the South of Guinea.In addition,the dry years,the end of 1970 and 1980 to 1987 recognized by the WMO(World Meteorological Organization)as drought years were highlighted in the Diani watershed in the South of the Republic of Guinea.
文摘Drinking good quality water is essential for better health. It is therefore essential to assess the radiological quality of all water consumed in the District of Abidjan in order to prevent related hazards. Thus, the objective of this study was to assess the risk of cancer due to the ingestion of alpha and beta emitting radionuclides in the different types of water consumed in the region. A total of 63 water samples with 43 tap water samples, 5 bottled mineral water and 15 sachet water samples was collected and taken to GAEC laboratory for analysis. The low background Gas-less Automatic Alpha/Beta counting system (Canberra iMatic<sup>TM</sup>) was used to determine alpha and beta activity concentrations. Activity concentrations of both gross alpha and gross beta obtained in water sample were respectively lower than the WHO recommended limits of 0.1 Bq/l and 1 Bq/l. Also, the annual effective dose and total equivalent effective dose found in mineral bottled water samples were higher than in other types of water. The assessment of radiological lifetime risk has shown values of cancer risk due to ingestion alpha and beta emitters lower than recommended limit. These results indicate that there is no health hazard associated to consumption of water in the District of Abidjan.
文摘The interdependency among water, food, and energy (WEF) in the GCC countries is strongly and closely interlinked, and is intensifying as demand for resources increases with population growth and changing consumption patterns, and are expected to be further compounded by the impacts of climate change. Therefore, integrated management of the three sectors is crucial to reduce trade-offs and build synergies among them. This paper presents a comprehensive framework to assess the WEF nexus in Kuwait as a representative case for the GCC countries. The framework consists of three main steps: 1) evaluating the influence of socio-economic development and climate change on water, energy, and food resources;2) generating scenario-based projections;and 3) conducting an extensive quantitative nexus analysis. The WEF interlinkages in Kuwait are modelled quantitatively using the Q-Nexus model, and current critical interdependencies are evaluated. Then, various WEF-Nexus scenarios were conducted for the year 2035 to explore the effects of management interventions in one sector on the other two sectors. The main findings are that per capita municipal water consumption is a major influencer on the WEF-nexus due to the heavy reliance on thermal desalination in municipal water supply in Kuwait, which is attributed to its energy intensity, financial cost, GHGs emissions, and environmental impacts on the marine and air environments. To reduce WEF trade-offs, mitigate risks, and build synergies among the three sectors, it is important to shift the current policy focus on supply-side management approach to the demand-side management and efficiency approaches.
基金Under the auspices of the National Natural Science Foundation of China(No.42271279,41931293,41801175)。
文摘Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.
文摘Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined pressures: chemical, hydro-morphological, thermal or trophic, affect and disrupt the functioning of aquatic organisms. The objective of this study was to assess the main human pressures influencing the surface water resources of the Kamsar sub-prefecture, in order to propose mitigation measures. The following methodological approach was adopted: 1) Survey of managers and analysis records;2) Survey of stakeholders;3) Assessment of the effect of human activities on surface water resources;4) Data processing;5) Corrective measures. The survey farmers working near aquatic environments, revealed a low use of chemical substances, in particular 3 to 11 kg of fertilizer and 0 to 3 boxes of herbicide on fields of 40 m2 to 2 ha. Some physico-chemical parameters have been determined: Temperature (28.5˚C, 23.7˚C, 22.8˚C, 21.3˚C, 21.6˚C), Salinity (26.9‰, 21.9‰, 21.5‰, 15‰, 15.3‰) and Turbidity (21.3 UTN, 19.3 UTN, 17.8 UTN, 16.7 UTN, 17 UTN). These values show a fluctuation in the environmental parameters of aquatic ecosystems, which constitutes an obstacle to the development and survival of the resources.
基金funded by the National Natural Science Foundation of China(41907175)the Open Fund of Key Laboratory(WSRCR-2023-01)the project of the China Geological Survey(DD20230459).
文摘Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.
基金Sponsorship of the Outstanding Youth Innovation Team Development Program for Institutes of Higher Learning in Shandong Province(2021RW008)the Youth Program of the Natural Science Foundation of Shandong Province(ZR2021QG048).
文摘As part of its efforts to promote a sustainable and high-quality development,China has pledged to reduce water consumption and create a water-efficient society.On the basis of identifying the institutional root causes of excessive capital allocation and excessive water consumption in China’s water-intensive industrial sectors,this study elaborates how the national water-efficient cities assessment contributes to optimized capital allocation.Our research shows that national water-efficient cities assessment has motivated local governments to compete for water efficiency.To conserve water,local governments regulated the entry and exit of water-intensive enterprises,discouraged excessive investments in water-intensive sectors,and phased out obsolete water-intensive capacities within their jurisdictions.This approach has resulted in mutually beneficial outcomes,including improved allocation of capital,enhanced water efficiency,and reduced emissions.This paper offers policy recommendations for establishing a water-efficient society throughout the 14^(th) Five-Year Plan(2021-2025)period by presenting empirical evidence on the policy effects of resource efficiency evaluation.
基金The Knowledge Innovation Program of Wuhan-Shuguang Project(Project No.2023020201020361).
文摘At present,the major problems facing the water resource environment worldwide include water pollution,water resource shortage,and water ecosystem degradation.The discharge of industrial wastewater,agricultural non-point source pollution,and the discharge of urban sewage lead to a serious decline in water quality,which directly affects the safety of human drinking water and the living environment of aquatic organisms.Additionally,the unbalanced distribution and excessive exploitation of water resources lead to the problem of water shortage in many areas,which then leads to social and economic contradictions and ecological crises.In terms of ecosystems,the phenomena of water ecological degradation and reduction of biodiversity are increasingly obvious,and the carrying capacity of aquatic ecosystems are gradually declining.This paper aims to analyze the natural,social,and economic factors affecting the water resource environment,and propose effective strategies to protect the water ecology.To provide a theoretical basis and practical guidance for the sustainable utilization of water resources and the long-term development of the water ecosystem.
文摘This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technological advances since the 19th century. From 1900 to 2010, temperatures in the Midwest rose by an average of 1.5 degrees Fahrenheit, which would also lead to an increase in greenhouse gas emissions. Precipitation is also expected to increase due to increased storm activity and changes in regional weather patterns. This paper explores the impact of these changes on urban and agricultural areas. In urban areas such as the city of Chicago, runoff from the increasing impervious surface areas poses challenges to the drainage system, and agriculture areas are challenged by soil erosion, nutrient loss, and fewer planting days due to excessive rainfall. Sustainable solutions such as no-till agriculture and the creation of grassland zones are discussed. Using historical data, recent climate studies and projections, the paper Outlines ways to enhance the Midwest’s ecology and resilience to climate change.
基金the Collaborative Innovation Center of Mine Intelligent Equipment and Technology,Anhui University of Science&Technology(CICJMITE202203)National Key R&D Program of China(2018YFC0604503)Anhui Province Postdoctoral Research Fund Funding Project(2019B350).
文摘The problem of mine water source has always been an important hidden danger in mine safety production.The water source under the mine working face may lead to geological disasters,such as mine collapse and water disaster.The research background of mine water source identification involves many fields such as mining production,environmental protection,resource utilization and technological progress.It is a comprehensive and interdisciplinary subject,which helps to improve the safety and sustainability of mine production.Therefore,timely and accurate identification and control of mine water source is very important to ensure mine production safety.Laser-Induced Fluorescence(LIF)technology,characterized by high sensitivity,specificity,and spatial resolution,overcomes the time-consuming nature of traditional chemical methods.In this experiment,sandstone water and old air water were collected from the Huainan mining area as original samples.Five types of mixed water samples were prepared by varying their proportions,in addition to the two original water samples,resulting in a total of seven different water samples for testing.Four preprocessing methods,namely,MinMaxScaler,StandardScaler,Standard Normal Variate(SNV)transformation,and Centering Transformation(CT),were applied to preprocess the original spectral data to reduce noise and interference.CT was determined as the optimal preprocessing method based on class discrimination,data distribution,and data range.To maintain the original data features while reducing the data dimension,including the original spectral data,five sets of data were subjected to Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)dimensionality reduction.Through comparing the clustering effect and Fisher's ratio of the first three dimensions,PCA was identified as the optimal dimensionality reduction method.Finally,two neural network models,CT+PCA+CNN and CT+PCA+ResNet,were constructed by combining Convolutional Neural Networks(CNN)and Residual Neural Networks(ResNet),respectively.When selecting the neural network models,the training time,number of iterative parameters,accuracy,and cross-entropy loss function in the classification problem were compared to determine the model best suited for water source data.The results indicated that CT+PCA+ResNet was the optimal approach for water source identification in this study.
基金supported by the 2021 Graduate Science Research Project of the Anhui Higher Education Institutions(Grant No.YJS20210375)the Natural Science Research Project of Universities in Anhui Province(Grant No.KJ2020ZD64)+2 种基金the Natural Science Foundation of Anhui Province(Grant No.2008085MD122)the Outstanding Young Talents in Higher Education Institutions of Anhui Province(Grant No.ZD2021134)the Research Development Foundation of Suzhou University(Grant No.2021fzjj28).
文摘The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential pollution sources. In this study, 99 water samples were collected from a river in a typical agricultural city of Anhui Province in eastern China, and these samples were analyzed in terms of pH, electrical conductivity, and the concentrations of F-, Cl-, SO42-, Na+, K+, Mg2+, Ca2+, As, Cr, Cu, Zn, and Pb. Cluster analysis, co-occurrence network analysis, and principal component analysis/factor analysis were conducted to qualitatively identify the potential sources of river water pollution in the study area. An absolute principal component score-multiple linear regression receptor model was used to quantitatively evaluate the contribution of each source to water quality parameters. The results showed that all observed water quality indices met the quality criteria specified in the Chinese drinking water standards, except for pH, ρ(F-), ρ(SO42-), and ρ(As). The heat map showed that the frequent recharge of pollutants from the tributaries during the wet season was the main reason for the deterioration of water quality. Five sources of river water pollution were identified, and their contribution ratios in a descending order were as follows: the geogenic process (24%) > agricultural activities (21%) > poultry farming sources (17%) > domestic pollution (9%) > transportation pollution (5%). Therefore, controlling pollution from agricultural activities, strengthening the regulation of livestock farming, and improving the sewage network are the recommended strategies for improving the quality of surface water resources in this area.
基金supported by Zhejiang A&F University(2022LFR083)Key R&D Program of Zhejiang Province(2021C02038)the International Centre for Bamboo and Rattan(1632021006)。
文摘Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be controlled by reducing the amount of fertilizer applied,but pollution caused by soil and water erosion in hilly areas can only be controlled by conservation forests.The catchment area around Fushi Reservoir was selected as a test site and mechanisms of N loss from a vertical spatial perspective through field observations were determined.The main N losses occurred from June to September,accounting for 85.9-95.9%of the annual loss,with the losses in June and July accounting for 46.0%of the total,and in August and September for 41.9%.The N leakage from the water source area was effectively reduced by 38.2%through the optimization of the stand structure of the conservation forests.Establishing well-structured forests for water conservation is crucial to ensure the security of drinking water.This preliminary research lays the foundation for revealing then loss mechanisms in water source areas and improving the control of non-point source pollution in these areas.
基金supported by the National Natural Science Foundation of China(Grant Nos.41761047,41861040 and 41861034).
文摘Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.
基金supported by the Program of Applied Basic Research Program of Shanxi Province,China (No.202103021223055)the Shanxi Scholarship Council of Chinathe Key R&D program of Shanxi Province,China (No.202102030201006)。
文摘As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.