The information society makes people's lives gradually enter a digital state for living. And the popularity of the Internet has led to the unique phenomenon of network words. What impact will network and the combi...The information society makes people's lives gradually enter a digital state for living. And the popularity of the Internet has led to the unique phenomenon of network words. What impact will network and the combination of language bring about? This article will explore the relation between the phenomenon of network words and social context from the angle of social linguistic through the analysis of network words and grammatical features.展开更多
Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Car...Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Cardiology,medical imaging technology(2D ultrasonic,MRI)has been proved to be helpful to detect congenital defects of the fetal heart and assists sonographers in prenatal diagnosis.It is a highly complex task to recognize 2D fetal heart ultrasonic standard plane(FHUSP)manually.Compared withmanual identification,automatic identification through artificial intelligence can save a lot of time,ensure the efficiency of diagnosis,and improve the accuracy of diagnosis.In this study,a feature extraction method based on texture features(Local Binary Pattern LBP and Histogram of Oriented Gradient HOG)and combined with Bag of Words(BOW)model is carried out,and then feature fusion is performed.Finally,it adopts Support VectorMachine(SVM)to realize automatic recognition and classification of FHUSP.The data includes 788 standard plane data sets and 448 normal and abnormal plane data sets.Compared with some other methods and the single method model,the classification accuracy of our model has been obviously improved,with the highest accuracy reaching 87.35%.Similarly,we also verify the performance of the model in normal and abnormal planes,and the average accuracy in classifying abnormal and normal planes is 84.92%.The experimental results show that thismethod can effectively classify and predict different FHUSP and can provide certain assistance for sonographers to diagnose fetal congenital heart disease.展开更多
English language, as a global language, is exerting greater influence on the world. It has been enlarging along with the development of the society, the progress of science and technology by the way of borrowing from ...English language, as a global language, is exerting greater influence on the world. It has been enlarging along with the development of the society, the progress of science and technology by the way of borrowing from other languages such as French, German, Italian, Spanish, Russian, Chinese, Japanese, and Arabic in the fields of politics, culture, education, economics, science, and technology. Borrowing or loan word has become an important part in the process of English vocabulary acquisition. This paper studies modem English loan words, summarizes types of loan words, and makes a tentative analysis of their features with the attempt to facilitate English learning in an effective way.展开更多
This research proposes and implements an Arabic Sub-Words Recognition System (ASWR). The system focuses on employing a combination of statistical and structural features to provide complete pattern's description an...This research proposes and implements an Arabic Sub-Words Recognition System (ASWR). The system focuses on employing a combination of statistical and structural features to provide complete pattern's description and enhances the recognition rate. Support Vector Machines (SVMs) is utilized as a promising pattern recognition tool. In addition to that, the problems of dots and holes are solved in a completely different way from the ones previously employed. The proposed system proceeds in several phases as follows: (1) image acquisition, (2) binarisation, (3) morphological processing, (4) feature extraction, which includes statistical features, i.e., moment invariants, and structural features, i.e., dot number, dot position, and number of holes, features, and (5) classification, using multi-class SVMs and applying a one-against-all technique. The proposed system has been tested using different sets of words and subwords and has achieved a nearly 98.90% recogiaition rate. Comparative results with NNs are also presented.展开更多
English words in pairs are a special form of English idioms, which have different kinds and are used widely. For English learners, words in pairs are one of the difficult points. This paper discusses their form patter...English words in pairs are a special form of English idioms, which have different kinds and are used widely. For English learners, words in pairs are one of the difficult points. This paper discusses their form patterns, semantic relations, grammatical functions, rhetoric features and their application in translation. Its purpose is to help learners understand and use them accurately and correctly so as to improve language expressing ability.展开更多
Since the ARPANET created by the US Department of De-fense occurred in 1969,the internet has gone through a 50-year-or-so history,and now has already become the most widely usedmedia.It is an irrefutable fact that in ...Since the ARPANET created by the US Department of De-fense occurred in 1969,the internet has gone through a 50-year-or-so history,and now has already become the most widely usedmedia.It is an irrefutable fact that in network communication Eng-lish has beena leading language from the very beginning.Withthe development of the internet technology,web-English has al-ready merged into people’s daily life.This passage will talk aboutthefeaturesofweb-Englishwords.NEOLOGISMThe expansion of vocabulary in modern English dependschiefly on word-formation.There is a variety of means at展开更多
A feature extraction, which means extracting the representative words from a text, is an important issue in text mining field. This paper presented a new Apriori and N-gram based Chinese text feature extraction method...A feature extraction, which means extracting the representative words from a text, is an important issue in text mining field. This paper presented a new Apriori and N-gram based Chinese text feature extraction method, and analyzed its correctness and performance. Our method solves the question that the exist extraction methods cannot find the frequent words with arbitrary length in Chinese texts. The experimental results show this method is feasible.展开更多
Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this...Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this problem,this paper proposes to combine two ingredients:(i)Three features with functions of mutual complementation are adopted to describe the images,including pyramid histogram of words(PHOW),pyramid histogram of color(PHOC)and pyramid histogram of orientated gradients(PHOG).(ii)An adaptive feature-weight adjusted image categorization algorithm based on the SVM and the decision level fusion of multiple features are employed.Experiments are carried out on the Caltech101 database,which confirms the validity of the proposed approach.The experimental results show that the classification accuracy rate of the proposed method is improved by 7%-14%higher than that of the traditional BOW methods.With full utilization of global,local and spatial information,the algorithm is much more complete and flexible to describe the feature information of the image through the multi-feature fusion and the pyramid structure composed by image spatial multi-resolution decomposition.Significant improvements to the classification accuracy are achieved as the result.展开更多
The number of mobile application services is showing an explosive growth trend,which makes it difficult for users to determine which ones are of interest.Especially,the new mobile application services are emerge conti...The number of mobile application services is showing an explosive growth trend,which makes it difficult for users to determine which ones are of interest.Especially,the new mobile application services are emerge continuously,most of them have not be rated when they need to be recommended to users.This is the typical problem of cold start in the field of collaborative filtering recommendation.This problem may makes it difficult for users to locate and acquire the services that they actually want,and the accuracy and novelty of service recommendations are also difficult to satisfy users.To solve this problem,a hybrid recommendation method for mobile application services based on content feature extraction is proposed in this paper.First,the proposed method in this paper extracts service content features through Natural Language Processing technologies such as word segmentation,part-of-speech tagging,and dependency parsing.It improves the accuracy of describing service attributes and the rationality of the method of calculating service similarity.Then,a language representation model called Bidirectional Encoder Representation from Transformers(BERT)is used to vectorize the content feature text,and an improved weighted word mover’s distance algorithm based on Term Frequency-Inverse Document Frequency(TFIDF-WMD)is used to calculate the similarity of mobile application services.Finally,the recommendation process is completed by combining the item-based collaborative filtering recommendation algorithm.The experimental results show that by using the proposed hybrid recommendation method presented in this paper,the cold start problem is alleviated to a certain extent,and the accuracy of the recommendation result has been significantly improved.展开更多
The main purposes of this thesis are to carry through a further investigation of the lexical features of business English correspondence and to present the lexical application methods which are based on basic rules in...The main purposes of this thesis are to carry through a further investigation of the lexical features of business English correspondence and to present the lexical application methods which are based on basic rules in effective business English letter writing.展开更多
Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the...Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the features of the context such as neighboring words like adjective provide the evidence for classification using machine learning approach.This paper presented the text document classification that has wide applications in information retrieval,which uses movie review datasets.Here the document indexing based on controlled vocabulary,adjective,word sense disambiguation,generating hierarchical cate-gorization of web pages,spam detection,topic labeling,web search,document summarization,etc.Here the kernel support vector machine learning algorithm helps to classify the text and feature extract is performed by cuckoo search opti-mization.Positive review and negative review of movie dataset is presented to get the better classification accuracy.Experimental results focused with context mining,feature analysis and classification.By comparing with the previous work,proposed work designed to achieve the efficient results.Overall design is per-formed with MATLAB 2020a tool.展开更多
针对词向量语义信息不完整以及文本特征抽取时的一词多义问题,提出基于BERT(Bidirectional Encoder Representation from Transformer)的两次注意力加权算法(TARE)。首先,在词向量编码阶段,通过构建Q、K、V矩阵使用自注意力机制动态编...针对词向量语义信息不完整以及文本特征抽取时的一词多义问题,提出基于BERT(Bidirectional Encoder Representation from Transformer)的两次注意力加权算法(TARE)。首先,在词向量编码阶段,通过构建Q、K、V矩阵使用自注意力机制动态编码算法,为当前词的词向量捕获文本前后词语义信息;其次,在模型输出句子级特征向量后,利用定位信息符提取全连接层对应参数,构建关系注意力矩阵;最后,运用句子级注意力机制算法为每个句子级特征向量添加不同的注意力分数,提高句子级特征的抗噪能力。实验结果表明:在NYT-10m数据集上,与基于对比学习框架的CIL(Contrastive Instance Learning)算法相比,TARE的F1值提升了4.0个百分点,按置信度降序排列后前100、200和300条数据精准率Precision@N的平均值(P@M)提升了11.3个百分点;在NYT-10d数据集上,与基于注意力机制的PCNN-ATT(Piecewise Convolutional Neural Network algorithm based on ATTention mechanism)算法相比,精准率与召回率曲线下的面积(AUC)提升了4.8个百分点,P@M值提升了2.1个百分点。在主流的远程监督关系抽取(DSER)任务中,TARE有效地提升了模型对数据特征的学习能力。展开更多
文摘The information society makes people's lives gradually enter a digital state for living. And the popularity of the Internet has led to the unique phenomenon of network words. What impact will network and the combination of language bring about? This article will explore the relation between the phenomenon of network words and social context from the angle of social linguistic through the analysis of network words and grammatical features.
基金supported by Fujian Provincial Science and Technology Major Project(No.2020HZ02014)by the grants from National Natural Science Foundation of Fujian(2021J01133,2021J011404)by the Quanzhou Scientific and Technological Planning Projects(Nos.2018C113R,2019C028R,2019C029R,2019C076R and 2019C099R).
文摘Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Cardiology,medical imaging technology(2D ultrasonic,MRI)has been proved to be helpful to detect congenital defects of the fetal heart and assists sonographers in prenatal diagnosis.It is a highly complex task to recognize 2D fetal heart ultrasonic standard plane(FHUSP)manually.Compared withmanual identification,automatic identification through artificial intelligence can save a lot of time,ensure the efficiency of diagnosis,and improve the accuracy of diagnosis.In this study,a feature extraction method based on texture features(Local Binary Pattern LBP and Histogram of Oriented Gradient HOG)and combined with Bag of Words(BOW)model is carried out,and then feature fusion is performed.Finally,it adopts Support VectorMachine(SVM)to realize automatic recognition and classification of FHUSP.The data includes 788 standard plane data sets and 448 normal and abnormal plane data sets.Compared with some other methods and the single method model,the classification accuracy of our model has been obviously improved,with the highest accuracy reaching 87.35%.Similarly,we also verify the performance of the model in normal and abnormal planes,and the average accuracy in classifying abnormal and normal planes is 84.92%.The experimental results show that thismethod can effectively classify and predict different FHUSP and can provide certain assistance for sonographers to diagnose fetal congenital heart disease.
文摘English language, as a global language, is exerting greater influence on the world. It has been enlarging along with the development of the society, the progress of science and technology by the way of borrowing from other languages such as French, German, Italian, Spanish, Russian, Chinese, Japanese, and Arabic in the fields of politics, culture, education, economics, science, and technology. Borrowing or loan word has become an important part in the process of English vocabulary acquisition. This paper studies modem English loan words, summarizes types of loan words, and makes a tentative analysis of their features with the attempt to facilitate English learning in an effective way.
文摘This research proposes and implements an Arabic Sub-Words Recognition System (ASWR). The system focuses on employing a combination of statistical and structural features to provide complete pattern's description and enhances the recognition rate. Support Vector Machines (SVMs) is utilized as a promising pattern recognition tool. In addition to that, the problems of dots and holes are solved in a completely different way from the ones previously employed. The proposed system proceeds in several phases as follows: (1) image acquisition, (2) binarisation, (3) morphological processing, (4) feature extraction, which includes statistical features, i.e., moment invariants, and structural features, i.e., dot number, dot position, and number of holes, features, and (5) classification, using multi-class SVMs and applying a one-against-all technique. The proposed system has been tested using different sets of words and subwords and has achieved a nearly 98.90% recogiaition rate. Comparative results with NNs are also presented.
文摘English words in pairs are a special form of English idioms, which have different kinds and are used widely. For English learners, words in pairs are one of the difficult points. This paper discusses their form patterns, semantic relations, grammatical functions, rhetoric features and their application in translation. Its purpose is to help learners understand and use them accurately and correctly so as to improve language expressing ability.
文摘Since the ARPANET created by the US Department of De-fense occurred in 1969,the internet has gone through a 50-year-or-so history,and now has already become the most widely usedmedia.It is an irrefutable fact that in network communication Eng-lish has beena leading language from the very beginning.Withthe development of the internet technology,web-English has al-ready merged into people’s daily life.This passage will talk aboutthefeaturesofweb-Englishwords.NEOLOGISMThe expansion of vocabulary in modern English dependschiefly on word-formation.There is a variety of means at
文摘A feature extraction, which means extracting the representative words from a text, is an important issue in text mining field. This paper presented a new Apriori and N-gram based Chinese text feature extraction method, and analyzed its correctness and performance. Our method solves the question that the exist extraction methods cannot find the frequent words with arbitrary length in Chinese texts. The experimental results show this method is feasible.
基金Supported by Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61321002)Projects of Major International(Regional)Jiont Research Program NSFC(61120106010)+1 种基金Beijing Education Committee Cooperation Building Foundation ProjectProgram for Changjiang Scholars and Innovative Research Team in University(IRT1208)
文摘Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this problem,this paper proposes to combine two ingredients:(i)Three features with functions of mutual complementation are adopted to describe the images,including pyramid histogram of words(PHOW),pyramid histogram of color(PHOC)and pyramid histogram of orientated gradients(PHOG).(ii)An adaptive feature-weight adjusted image categorization algorithm based on the SVM and the decision level fusion of multiple features are employed.Experiments are carried out on the Caltech101 database,which confirms the validity of the proposed approach.The experimental results show that the classification accuracy rate of the proposed method is improved by 7%-14%higher than that of the traditional BOW methods.With full utilization of global,local and spatial information,the algorithm is much more complete and flexible to describe the feature information of the image through the multi-feature fusion and the pyramid structure composed by image spatial multi-resolution decomposition.Significant improvements to the classification accuracy are achieved as the result.
基金Project supported by the National Natural Science Foundation,China(No.62172123)the Postdoctoral Science Foundation of Heilongjiang Province,China(No.LBH-Z19067)+1 种基金the special projects for the central government to guide the development of local science and technology,China(No.ZY20B11)the Natural Science Foundation of Heilongjiang Province,China(No.QC2018081).
文摘The number of mobile application services is showing an explosive growth trend,which makes it difficult for users to determine which ones are of interest.Especially,the new mobile application services are emerge continuously,most of them have not be rated when they need to be recommended to users.This is the typical problem of cold start in the field of collaborative filtering recommendation.This problem may makes it difficult for users to locate and acquire the services that they actually want,and the accuracy and novelty of service recommendations are also difficult to satisfy users.To solve this problem,a hybrid recommendation method for mobile application services based on content feature extraction is proposed in this paper.First,the proposed method in this paper extracts service content features through Natural Language Processing technologies such as word segmentation,part-of-speech tagging,and dependency parsing.It improves the accuracy of describing service attributes and the rationality of the method of calculating service similarity.Then,a language representation model called Bidirectional Encoder Representation from Transformers(BERT)is used to vectorize the content feature text,and an improved weighted word mover’s distance algorithm based on Term Frequency-Inverse Document Frequency(TFIDF-WMD)is used to calculate the similarity of mobile application services.Finally,the recommendation process is completed by combining the item-based collaborative filtering recommendation algorithm.The experimental results show that by using the proposed hybrid recommendation method presented in this paper,the cold start problem is alleviated to a certain extent,and the accuracy of the recommendation result has been significantly improved.
文摘The main purposes of this thesis are to carry through a further investigation of the lexical features of business English correspondence and to present the lexical application methods which are based on basic rules in effective business English letter writing.
文摘Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the features of the context such as neighboring words like adjective provide the evidence for classification using machine learning approach.This paper presented the text document classification that has wide applications in information retrieval,which uses movie review datasets.Here the document indexing based on controlled vocabulary,adjective,word sense disambiguation,generating hierarchical cate-gorization of web pages,spam detection,topic labeling,web search,document summarization,etc.Here the kernel support vector machine learning algorithm helps to classify the text and feature extract is performed by cuckoo search opti-mization.Positive review and negative review of movie dataset is presented to get the better classification accuracy.Experimental results focused with context mining,feature analysis and classification.By comparing with the previous work,proposed work designed to achieve the efficient results.Overall design is per-formed with MATLAB 2020a tool.
文摘针对词向量语义信息不完整以及文本特征抽取时的一词多义问题,提出基于BERT(Bidirectional Encoder Representation from Transformer)的两次注意力加权算法(TARE)。首先,在词向量编码阶段,通过构建Q、K、V矩阵使用自注意力机制动态编码算法,为当前词的词向量捕获文本前后词语义信息;其次,在模型输出句子级特征向量后,利用定位信息符提取全连接层对应参数,构建关系注意力矩阵;最后,运用句子级注意力机制算法为每个句子级特征向量添加不同的注意力分数,提高句子级特征的抗噪能力。实验结果表明:在NYT-10m数据集上,与基于对比学习框架的CIL(Contrastive Instance Learning)算法相比,TARE的F1值提升了4.0个百分点,按置信度降序排列后前100、200和300条数据精准率Precision@N的平均值(P@M)提升了11.3个百分点;在NYT-10d数据集上,与基于注意力机制的PCNN-ATT(Piecewise Convolutional Neural Network algorithm based on ATTention mechanism)算法相比,精准率与召回率曲线下的面积(AUC)提升了4.8个百分点,P@M值提升了2.1个百分点。在主流的远程监督关系抽取(DSER)任务中,TARE有效地提升了模型对数据特征的学习能力。