Fujian is in the coastal area of southeast China. It isalso known as Min. Ancestors of many Taiwan Residents now livingin Taiwan were from Fujian and the Chinese people on bothsides are concerned by shared family tree...Fujian is in the coastal area of southeast China. It isalso known as Min. Ancestors of many Taiwan Residents now livingin Taiwan were from Fujian and the Chinese people on bothsides are concerned by shared family trees. Since展开更多
The sedimentary strata and deposition ages of the 'old red sand' distributed along the coasts of south Fujian and west Guangdong are determined by lithostratigraphy, magnetic stratigraphy and earth chemistry c...The sedimentary strata and deposition ages of the 'old red sand' distributed along the coasts of south Fujian and west Guangdong are determined by lithostratigraphy, magnetic stratigraphy and earth chemistry combined with TL, ESR and 14C-dating techniques. The research shows that the 'old red sand' was aeolian sediments deposited from 55 400 to 9 000 aBP, the last glacial period in the middle and later age of Late Pleistocene. Most of them deposited in two periods of 56-42 ka and 30-10 ka. The 'old red sand' deposited in the period of 30-10 ka, the later Wurm glacier substage (Q33), developed on the largest scale with the widest distribution.展开更多
Southwest Fujian area has experienced a large-scale transgression regression cycle in Late Triassic-Middle Jurassic and the maximum transgression has taken place in Early Jurassic. The migration and enrichment of geoc...Southwest Fujian area has experienced a large-scale transgression regression cycle in Late Triassic-Middle Jurassic and the maximum transgression has taken place in Early Jurassic. The migration and enrichment of geochemical element in the continuous fine-grained sediments in the basin recorded the paleosalinity and the paleodepth. The changes of paleosalinity and paleodepth indicate the sea(lake) level relative change in every period of Late Triassic-Middle Jurassic in southwestern Fujian. The relative change curve of sea(lake) level in southwestern Fujian is established based on the m value(m=100×w(MgO)/w(Al2 O3)) and the ratios of w(B)/w(Ga), w(Sr)/w(Ba) and w(Ca)/w(Mg). The curve indicates that level I sea-level relative change in southwestern Fujian is composed of the transgression in Late Triassic-Early Jurassic and the regression in the late period of Early Jurassic-Middle Jurassic. The level III sea-level relative change is frequent, which is composed by the lake level descent lake level rise lake level descent of Wenbin Shan formation in Late Triassic, the regression transgression regression of Lishan formation in Early Jurassic and the lake level rise lake level descent-lake level rise lake level descent of Zhangping formation in Middle Jurassic. The transgression regression cycle in southwestern Fujian is significantly controlled by the sea-level change in the north of South China Sea. The relative change curve trends of the level I sea-level in the north of South China Sea and the one in southwestern Fujian are the same. The maximum transgressions both occur in Early Jurassic. The level III sea-level curve reflects the fluctuation of a transgression and two regressions in the early period of Early Jurassic.展开更多
pH and base saturation percentage (BSP) are two basic indexes in identifying soil types in Chinese Soil Taxonomy. Some studies proved that there is significant correlation between BSP and pH, thus it could save the co...pH and base saturation percentage (BSP) are two basic indexes in identifying soil types in Chinese Soil Taxonomy. Some studies proved that there is significant correlation between BSP and pH, thus it could save the cost of laboratory work if we can infer BSP directly from pH. In this study, the measured values of BSP and pH of 162 and 232 horizon samples from 48 and 55 red soil series surveyed from 2009 to 2011 in Fujian and Guangdong respectively were adopted from Soil Series Database to set up the optimal correlation model between BSP and pH. The results showed that: 1) BSP ranged from 2.30% to 94.02% with a mean of 25.07%, while pH from 3.42 to 6.91 with a mean of 4.98 for the total soil samples. 2) There were significant differences in pH between different soil types (R2 were 0.624 for Ferralosols, 0.507 for Ferrosols, 0.515 for Argosols, and 0.456 for Cambosols, p 2 were 0.580 for Quaternary red clay, 0.434 for granite, 0.642 for sandstone, and 0.712 for basalt, p 2 were 0.623 for dryland, and 0.404 for forest land, p 0), their probability density curves were mainly in flat or normal curves (y = 6.84x2 −45.86x + 81.52, R2 = 0.494, p < 0.01).展开更多
文摘Fujian is in the coastal area of southeast China. It isalso known as Min. Ancestors of many Taiwan Residents now livingin Taiwan were from Fujian and the Chinese people on bothsides are concerned by shared family trees. Since
文摘The sedimentary strata and deposition ages of the 'old red sand' distributed along the coasts of south Fujian and west Guangdong are determined by lithostratigraphy, magnetic stratigraphy and earth chemistry combined with TL, ESR and 14C-dating techniques. The research shows that the 'old red sand' was aeolian sediments deposited from 55 400 to 9 000 aBP, the last glacial period in the middle and later age of Late Pleistocene. Most of them deposited in two periods of 56-42 ka and 30-10 ka. The 'old red sand' deposited in the period of 30-10 ka, the later Wurm glacier substage (Q33), developed on the largest scale with the widest distribution.
基金Project(XQ-2007-03(08)-03) supported by the Potential of Oil and Gas Resources Research and Strategy Selection of Mesozoic in the Southern South China SeaProject(40972074) supported by the National Natural Science Foundation of ChinaProject(2013M530976) supported by the Postdoctoral Science Foundation of China
文摘Southwest Fujian area has experienced a large-scale transgression regression cycle in Late Triassic-Middle Jurassic and the maximum transgression has taken place in Early Jurassic. The migration and enrichment of geochemical element in the continuous fine-grained sediments in the basin recorded the paleosalinity and the paleodepth. The changes of paleosalinity and paleodepth indicate the sea(lake) level relative change in every period of Late Triassic-Middle Jurassic in southwestern Fujian. The relative change curve of sea(lake) level in southwestern Fujian is established based on the m value(m=100×w(MgO)/w(Al2 O3)) and the ratios of w(B)/w(Ga), w(Sr)/w(Ba) and w(Ca)/w(Mg). The curve indicates that level I sea-level relative change in southwestern Fujian is composed of the transgression in Late Triassic-Early Jurassic and the regression in the late period of Early Jurassic-Middle Jurassic. The level III sea-level relative change is frequent, which is composed by the lake level descent lake level rise lake level descent of Wenbin Shan formation in Late Triassic, the regression transgression regression of Lishan formation in Early Jurassic and the lake level rise lake level descent-lake level rise lake level descent of Zhangping formation in Middle Jurassic. The transgression regression cycle in southwestern Fujian is significantly controlled by the sea-level change in the north of South China Sea. The relative change curve trends of the level I sea-level in the north of South China Sea and the one in southwestern Fujian are the same. The maximum transgressions both occur in Early Jurassic. The level III sea-level curve reflects the fluctuation of a transgression and two regressions in the early period of Early Jurassic.
文摘pH and base saturation percentage (BSP) are two basic indexes in identifying soil types in Chinese Soil Taxonomy. Some studies proved that there is significant correlation between BSP and pH, thus it could save the cost of laboratory work if we can infer BSP directly from pH. In this study, the measured values of BSP and pH of 162 and 232 horizon samples from 48 and 55 red soil series surveyed from 2009 to 2011 in Fujian and Guangdong respectively were adopted from Soil Series Database to set up the optimal correlation model between BSP and pH. The results showed that: 1) BSP ranged from 2.30% to 94.02% with a mean of 25.07%, while pH from 3.42 to 6.91 with a mean of 4.98 for the total soil samples. 2) There were significant differences in pH between different soil types (R2 were 0.624 for Ferralosols, 0.507 for Ferrosols, 0.515 for Argosols, and 0.456 for Cambosols, p 2 were 0.580 for Quaternary red clay, 0.434 for granite, 0.642 for sandstone, and 0.712 for basalt, p 2 were 0.623 for dryland, and 0.404 for forest land, p 0), their probability density curves were mainly in flat or normal curves (y = 6.84x2 −45.86x + 81.52, R2 = 0.494, p < 0.01).