This paper presents an observational study of the physical processes responsible for the inactive period (break) of the summer monsoon over South China (SC). The break of the monsoon is defined by using the rainfall d...This paper presents an observational study of the physical processes responsible for the inactive period (break) of the summer monsoon over South China (SC). The break of the monsoon is defined by using the rainfall data over Hong Kong Meteorological parameters provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) for the period 1985-1990 are examined. Daily values of each parameter for the six years are then composited each day for the period of 5 days before to 1 day after the break. It is found that several days before the break, changes opposite to those occurred during the onset and active periods begin to take place. This suggests that a feedback mechanism is present which tends to restore the atmosphere to a more stable state. This mechanism may be initiated by the formation of convective clouds during the onset and active periods. These clouds then reduce the solar radiation to the ground, leading to a gradual drop in the temperature. This drop, together with the cooling of the atmosphere due to the large amounts of rainfall, causes the pressure over the SC region to become higher, which in turn induces a westward extension of the subtropical ridge. The decrease in temperature over SC may also shift the location of the heat source to the west, which leads to a concomitant westward shift of the convergence of the southerlies and results in less moisture-laden air reaching the SC region. The atmosphere then becomes unfavourable for heavy convection and therefore a break starts.展开更多
Based on observational daily data of 730 meteorological stations in China, the south edge of the subtropical winter monsoon is defined according to relevant criterion and its variation characteristics are analyzed. Re...Based on observational daily data of 730 meteorological stations in China, the south edge of the subtropical winter monsoon is defined according to relevant criterion and its variation characteristics are analyzed. Results show that this south edge has obvious inter-annual variation characteristics and shows a northward moving tendency as a whole, but since the 21 st century it has moved southwards and date of the south edge entering winter becomes earlier. Wind fields of the anomalously northward south edge of the subtropical winter monsoon in East Asia has an obvious southerly wind component which prevents cold air from moving southward. The index of this south edge and winter temperature has a positive correlation. Climate warming might be the main reason for the northward movement of the south edge of the subtropical winter monsoon.展开更多
Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest chang...Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.展开更多
High temperature and drought occurred in Yunnan province during the late spring and early summer in 2005, which was the most severe event in this region since 1950’s. Based on the observational data and relevant diag...High temperature and drought occurred in Yunnan province during the late spring and early summer in 2005, which was the most severe event in this region since 1950’s. Based on the observational data and relevant diagnoses, this extreme weather event was studied and discussed. The results show that the occurrence of this event could be due to the following observational facts that happened in 2005. (1) The seasonal adjustment of middle-high-leveled atmospheric circulation was delayed. (2) The cold air activity center was deviated north. (3) The onset of summer monsoon over South China Sea was delayed. (4) The tropical convection activity was much weaker than usual. (5) The subtropical high over the western Pacific was located southwestwards and relatively strong.展开更多
文摘This paper presents an observational study of the physical processes responsible for the inactive period (break) of the summer monsoon over South China (SC). The break of the monsoon is defined by using the rainfall data over Hong Kong Meteorological parameters provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) for the period 1985-1990 are examined. Daily values of each parameter for the six years are then composited each day for the period of 5 days before to 1 day after the break. It is found that several days before the break, changes opposite to those occurred during the onset and active periods begin to take place. This suggests that a feedback mechanism is present which tends to restore the atmosphere to a more stable state. This mechanism may be initiated by the formation of convective clouds during the onset and active periods. These clouds then reduce the solar radiation to the ground, leading to a gradual drop in the temperature. This drop, together with the cooling of the atmosphere due to the large amounts of rainfall, causes the pressure over the SC region to become higher, which in turn induces a westward extension of the subtropical ridge. The decrease in temperature over SC may also shift the location of the heat source to the west, which leads to a concomitant westward shift of the convergence of the southerlies and results in less moisture-laden air reaching the SC region. The atmosphere then becomes unfavourable for heavy convection and therefore a break starts.
基金supported by "Definition of the south edge of the subtropical winter monsoon in East Asian and its variation characteristics" of The High School Specialized Research Fund for The Doctoral Program Funding Issue in 2011 (20113228110003)
文摘Based on observational daily data of 730 meteorological stations in China, the south edge of the subtropical winter monsoon is defined according to relevant criterion and its variation characteristics are analyzed. Results show that this south edge has obvious inter-annual variation characteristics and shows a northward moving tendency as a whole, but since the 21 st century it has moved southwards and date of the south edge entering winter becomes earlier. Wind fields of the anomalously northward south edge of the subtropical winter monsoon in East Asia has an obvious southerly wind component which prevents cold air from moving southward. The index of this south edge and winter temperature has a positive correlation. Climate warming might be the main reason for the northward movement of the south edge of the subtropical winter monsoon.
基金funded by the Guangxi Natural Science Foundation Program (2022GXNSFAA035583 and 2020GXNSFAA159108)National Natural Science Foundation of China (32060305)+2 种基金Foundation of Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of Education, China (ERESEP 2021Z06)Chinese Forest Biodiversity Monitoring Network
文摘Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.
基金The New Meteorological Technology Promotion Project of China MeteorologicalAdministration (CMATG2006M45)a project of the Chengdu Plateau Meteorology Institute, ChinaMeteorological Administration (LPM2006015)
文摘High temperature and drought occurred in Yunnan province during the late spring and early summer in 2005, which was the most severe event in this region since 1950’s. Based on the observational data and relevant diagnoses, this extreme weather event was studied and discussed. The results show that the occurrence of this event could be due to the following observational facts that happened in 2005. (1) The seasonal adjustment of middle-high-leveled atmospheric circulation was delayed. (2) The cold air activity center was deviated north. (3) The onset of summer monsoon over South China Sea was delayed. (4) The tropical convection activity was much weaker than usual. (5) The subtropical high over the western Pacific was located southwestwards and relatively strong.