rhml is a major recessive disease resistance locus for Southern corn leaf blight (SCLB). To further narrow down its genetic position, F2 population and BCIFI population derived from the cross between resistant (H95...rhml is a major recessive disease resistance locus for Southern corn leaf blight (SCLB). To further narrow down its genetic position, F2 population and BCIFI population derived from the cross between resistant (H95rhm) and susceptible parents (H95) of maize (Zea mays) were constructed. Using newly developed markers, rhml was initially delimited within an interval of 2.5 Mb, and then finally mapped to a 8.56 kb interval between InDel marker IDP961-503 and simple sequence repeat (SSR) marker A194149--1. Three polymorphic markers IDP961-504, IDP B2-3 and A194149-2 were shown to be co-segregated with the rhml locus. Sequence analysis of the 8.56 kb DNA fragment revealed that it contained only one putative gene with a predicted amino acid sequence identical to lysine histidine transporter 1 (LHT1). Comparative sequence analysis indicated that the LHT1 in H95rhrn harbors a 354 bp insertion in its third exon as compared with that of susceptible alleles in B73, H95 and Mo17. The 354 bp insertion resulted in a truncation of the predicted protein of candidate resistance allele (LHT1-H95rhm). Our results strongly suggest LHTI as the candidate gene for rhml against SCLB. The tightly linked molecular markers developed in this study can be directly used for molecular breeding of resistance to Southern corn leaf blight in maize.展开更多
Southern corn leaf blight (SCLB), caused by Bipolarismaydis, is one of the most devastatingdiseases affecting maize production. However,only one SLCB resistance gene, conferring partialresistance, is currently known, ...Southern corn leaf blight (SCLB), caused by Bipolarismaydis, is one of the most devastatingdiseases affecting maize production. However,only one SLCB resistance gene, conferring partialresistance, is currently known, underscoring theimportance of isolating new SCLB resistancerelatedgenes. Here, we performed a comparativeproteomic analysis and identified 258 proteinsshowing differential abundance during the maizeresponse to B. maydis. These proteins included anascorbate peroxidase (Zea mays ascorbate peroxidase1 (ZmAPX1)) encoded by a gene locatedwithin the mapping interval of a previously identifiedquantitative trait locus associated with SCLBresistance. ZmAPX1 overexpression resulted inlower H_(2)O_(2) accumulation and enhanced resistanceagainst B. maydis. Jasmonic acid (JA)contents and transcript levels for JA biosynthesisand responsive genes increased in ZmAPX1-overexpressing plants infected with B. maydis,whereas Zmapx1 mutants showed the oppositeeffects. We further determined that low levels of H_(2)O_(2) are accompanied by an accumulation of JAthat enhances SCLB resistance. These resultsdemonstrate that ZmAPX1 positively regulatesSCLB resistance by decreasing H_(2)O_(2) accumulationand activating the JA-mediated defensesignaling pathway. This study identified ZmAPX1as a potentially useful gene for increasing SCLBresistance. Furthermore, the generated datamay be relevant for clarifying the functions ofplant APXs.展开更多
基金supported by the National Key Basic Research Program of China (973 Program,2009CB118400)
文摘rhml is a major recessive disease resistance locus for Southern corn leaf blight (SCLB). To further narrow down its genetic position, F2 population and BCIFI population derived from the cross between resistant (H95rhm) and susceptible parents (H95) of maize (Zea mays) were constructed. Using newly developed markers, rhml was initially delimited within an interval of 2.5 Mb, and then finally mapped to a 8.56 kb interval between InDel marker IDP961-503 and simple sequence repeat (SSR) marker A194149--1. Three polymorphic markers IDP961-504, IDP B2-3 and A194149-2 were shown to be co-segregated with the rhml locus. Sequence analysis of the 8.56 kb DNA fragment revealed that it contained only one putative gene with a predicted amino acid sequence identical to lysine histidine transporter 1 (LHT1). Comparative sequence analysis indicated that the LHT1 in H95rhrn harbors a 354 bp insertion in its third exon as compared with that of susceptible alleles in B73, H95 and Mo17. The 354 bp insertion resulted in a truncation of the predicted protein of candidate resistance allele (LHT1-H95rhm). Our results strongly suggest LHTI as the candidate gene for rhml against SCLB. The tightly linked molecular markers developed in this study can be directly used for molecular breeding of resistance to Southern corn leaf blight in maize.
基金supported by the National Natural Science Foundation of China (31872872 and U1804113)the National Key Research and Development Program of China (2016YFD0101003)
文摘Southern corn leaf blight (SCLB), caused by Bipolarismaydis, is one of the most devastatingdiseases affecting maize production. However,only one SLCB resistance gene, conferring partialresistance, is currently known, underscoring theimportance of isolating new SCLB resistancerelatedgenes. Here, we performed a comparativeproteomic analysis and identified 258 proteinsshowing differential abundance during the maizeresponse to B. maydis. These proteins included anascorbate peroxidase (Zea mays ascorbate peroxidase1 (ZmAPX1)) encoded by a gene locatedwithin the mapping interval of a previously identifiedquantitative trait locus associated with SCLBresistance. ZmAPX1 overexpression resulted inlower H_(2)O_(2) accumulation and enhanced resistanceagainst B. maydis. Jasmonic acid (JA)contents and transcript levels for JA biosynthesisand responsive genes increased in ZmAPX1-overexpressing plants infected with B. maydis,whereas Zmapx1 mutants showed the oppositeeffects. We further determined that low levels of H_(2)O_(2) are accompanied by an accumulation of JAthat enhances SCLB resistance. These resultsdemonstrate that ZmAPX1 positively regulatesSCLB resistance by decreasing H_(2)O_(2) accumulationand activating the JA-mediated defensesignaling pathway. This study identified ZmAPX1as a potentially useful gene for increasing SCLBresistance. Furthermore, the generated datamay be relevant for clarifying the functions ofplant APXs.