Background,aim,and scope Certain physicochemical indexes of topsoil are closely related to climatic factors including temperature,and precipitation.Understanding the relationship between modern topsoil properties and ...Background,aim,and scope Certain physicochemical indexes of topsoil are closely related to climatic factors including temperature,and precipitation.Understanding the relationship between modern topsoil properties and climatic factors is essential for quantitative paleoclimate reconstruction.Motuo located in the eastern Himalayas,exhibits a significant elevation gradient of over 7000 m from Nnamjagbarwa Peak(7782 m a.s.l.)to the Baxika(150 m a.s.l.).This region features a complete vertical zonation of vegetation,from alpine meadow to tropical forest,presenting an ideal place to investigate the relationships among vegetation,soil and climate conditions across altitudinal gradients.This study aims to explore the vertical variations in the physicochemical composition of topsoil and its relationship with temperature and precipitation.Materials and methods Twenty-seven topsoil samples were collected at 100 m intervals from 800 m to 3600 m a.s.l.along the southern slope of the Himalayas.Grain size,magnetic susceptibility and geochemical elements were measured to discuss the vertical variation characteristics of topsoil composition and their correlation with climatic factors.Results(1)The grain size of topsoil at different altitudes in Motuo is mainly composed of sand accounting for an averaged 53.2%,followed by silt and clay.(2)In the mixed forest zone,frequency dependent magnetic susceptibility(χfd%)shows a clear relationship with altitude,and clay is positively correlated with both altitude and climatic factors.(3)The oxides of topsoil in this area mainly consist of SiO_(2),Al_(2)O_(3) and Fe_(2)O_(3),followed by MgO,CaO,Na_(2)O and K_(2)O,with slight variations in the primary components at different altitudes.The sensitivity of elements to climate varies across different altitudes and vegetation zone,likely due to the region’s complex topography and vegetation.(4)Physical and biological weathering dominates in the broad-leaved forest zone of Motuo,while chemical weathering is more prominent in the coniferous forest zone,with the mixed forest zone falling in between.Discussion The formation of topsoil across the three vegetation zones is influenced by various factors,including parent material,vegetation,and climate.In the broad-leaved forest zone,physical weathering(precipitation,root wedging etc.)and pedogenesis dominate,resulting in finer grain size.The χ_(fd)% increases with altitude likely due to the high temperature and abundant precipitation in this zone,which facilitate the transformation of strong magnetic miners into weaker ones,particularly when the soil is oversaturated.Zirconium(Zr),primarily found in zircon,is depleted at lower altitudes by strong current erosion.Barium(Ba)is similarly reduced at low altitudes in this zone.In mixed forest zone,clay content is the lowest,indicating weaker physical weathering conditions than broad-leaved forest zone.The coarser grain size may result from the combined effects of topography and vegetation coverage.Magnetic susceptibility and organic matter show a positive correlation with altitude.Zr concentration is higher than that in the broad-leaved forest zone,likely resulting from decreased precipitation.In the coniferous zone,the clay content shows considerable fluctuations,with grain size generally becoming finer as altitude increases.This trend may be explained by intensified soil disintegration from seasonal freeze-thaw cycles.The χ_(fd)% values lack a clear trend or pattern,possibly due to soil erosion causing the migration of magnetic minerals or insufficient iron precipitation,which reduces the concentration of magnetic minerals in the soil.Additionally,a positive correlation is observed between altitude and organic matter content,with higher altitudes associated with greater organic matter accumulation.This may be attributed to lower microbial activity in colder conditions,which slows the decomposition and transformation of organic matter.Conclusions The variations in grain size,magnetic susceptibility,and geochemical elements differ across altitudes and vegetation zones,closely connected to the complex interplay of terrain,vegetation,and climate in Motuo.In the mixed forest,altitude has a significant impact onχfd%,and the clay component is particularly sensitive to changes in altitude,mean annual temperature,and precipitation.Zr shows a strong correlation with altitude and climate factors,making it a valuable indicator for assessing changes in atmospheric precipitation within specific altitude ranges.Recommendations and perspectives This study enhances our understanding of the relationships between the physicochemical properties of topsoil and climate conditions,offering valuable insights for paleoclimate reconstruction in Motuo.展开更多
The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the p...The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.展开更多
Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which th...Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.展开更多
Abstract Episodic carbonate deposits on the Triassic continental slope in southern China are mainly composed of gravity-flow limestones and contourite limestones. Gravity-flow limestones were well developed in the low...Abstract Episodic carbonate deposits on the Triassic continental slope in southern China are mainly composed of gravity-flow limestones and contourite limestones. Gravity-flow limestones were well developed in the lower and middle Yangtze area in the Early Triassic and in the Yunnan-Guizhou-Guangxi area in the Early and Middle Triassic. Five fundamental types of gravity-flow limestones are recognized: slide limestone, debris-flow limestone, grain-flow limestone, turbidite limestone and rockfall limestone. They form six types of assemblage beds: slide-debris-flow limestones, slide-debris-flow-turbidite limestone, slide-debris-flow-grain-flow-turbidite limestone, rockfall-debris-flow limestone, debris-flow-turbidite limestone, and debris-flow-grain-flow-turbidite limestone. The first two were formed mainly in the Early Triassic slopes. The Middle Triassic slopes were characterized by widespread rockfall limestone. Growth faults, storms, earthquakes and oversteepened slopes are considered to be the probable triggers of the gravity flows.展开更多
针对复杂地质背景下的大陆架划界问题,提出了一种新的大陆坡脚点(foot point of the continental slope,FOS)确定方法。该方法基于水深平均梯度变化计算坡脚点所在位置,并结合相反证明以及凸包性、分段性、连续性原则进行优化。以莫桑...针对复杂地质背景下的大陆架划界问题,提出了一种新的大陆坡脚点(foot point of the continental slope,FOS)确定方法。该方法基于水深平均梯度变化计算坡脚点所在位置,并结合相反证明以及凸包性、分段性、连续性原则进行优化。以莫桑比克南部陆缘为研究区域,利用2021年实测的高精度多波束地形数据,应用该方法提取了大陆架划界最关键的依据——FOS,并与联合国大陆架界限委员会使用的Geocap软件提取的结果进行对比,确认了相同的FOS位置,证明该方法是准确有效的。展开更多
文摘Background,aim,and scope Certain physicochemical indexes of topsoil are closely related to climatic factors including temperature,and precipitation.Understanding the relationship between modern topsoil properties and climatic factors is essential for quantitative paleoclimate reconstruction.Motuo located in the eastern Himalayas,exhibits a significant elevation gradient of over 7000 m from Nnamjagbarwa Peak(7782 m a.s.l.)to the Baxika(150 m a.s.l.).This region features a complete vertical zonation of vegetation,from alpine meadow to tropical forest,presenting an ideal place to investigate the relationships among vegetation,soil and climate conditions across altitudinal gradients.This study aims to explore the vertical variations in the physicochemical composition of topsoil and its relationship with temperature and precipitation.Materials and methods Twenty-seven topsoil samples were collected at 100 m intervals from 800 m to 3600 m a.s.l.along the southern slope of the Himalayas.Grain size,magnetic susceptibility and geochemical elements were measured to discuss the vertical variation characteristics of topsoil composition and their correlation with climatic factors.Results(1)The grain size of topsoil at different altitudes in Motuo is mainly composed of sand accounting for an averaged 53.2%,followed by silt and clay.(2)In the mixed forest zone,frequency dependent magnetic susceptibility(χfd%)shows a clear relationship with altitude,and clay is positively correlated with both altitude and climatic factors.(3)The oxides of topsoil in this area mainly consist of SiO_(2),Al_(2)O_(3) and Fe_(2)O_(3),followed by MgO,CaO,Na_(2)O and K_(2)O,with slight variations in the primary components at different altitudes.The sensitivity of elements to climate varies across different altitudes and vegetation zone,likely due to the region’s complex topography and vegetation.(4)Physical and biological weathering dominates in the broad-leaved forest zone of Motuo,while chemical weathering is more prominent in the coniferous forest zone,with the mixed forest zone falling in between.Discussion The formation of topsoil across the three vegetation zones is influenced by various factors,including parent material,vegetation,and climate.In the broad-leaved forest zone,physical weathering(precipitation,root wedging etc.)and pedogenesis dominate,resulting in finer grain size.The χ_(fd)% increases with altitude likely due to the high temperature and abundant precipitation in this zone,which facilitate the transformation of strong magnetic miners into weaker ones,particularly when the soil is oversaturated.Zirconium(Zr),primarily found in zircon,is depleted at lower altitudes by strong current erosion.Barium(Ba)is similarly reduced at low altitudes in this zone.In mixed forest zone,clay content is the lowest,indicating weaker physical weathering conditions than broad-leaved forest zone.The coarser grain size may result from the combined effects of topography and vegetation coverage.Magnetic susceptibility and organic matter show a positive correlation with altitude.Zr concentration is higher than that in the broad-leaved forest zone,likely resulting from decreased precipitation.In the coniferous zone,the clay content shows considerable fluctuations,with grain size generally becoming finer as altitude increases.This trend may be explained by intensified soil disintegration from seasonal freeze-thaw cycles.The χ_(fd)% values lack a clear trend or pattern,possibly due to soil erosion causing the migration of magnetic minerals or insufficient iron precipitation,which reduces the concentration of magnetic minerals in the soil.Additionally,a positive correlation is observed between altitude and organic matter content,with higher altitudes associated with greater organic matter accumulation.This may be attributed to lower microbial activity in colder conditions,which slows the decomposition and transformation of organic matter.Conclusions The variations in grain size,magnetic susceptibility,and geochemical elements differ across altitudes and vegetation zones,closely connected to the complex interplay of terrain,vegetation,and climate in Motuo.In the mixed forest,altitude has a significant impact onχfd%,and the clay component is particularly sensitive to changes in altitude,mean annual temperature,and precipitation.Zr shows a strong correlation with altitude and climate factors,making it a valuable indicator for assessing changes in atmospheric precipitation within specific altitude ranges.Recommendations and perspectives This study enhances our understanding of the relationships between the physicochemical properties of topsoil and climate conditions,offering valuable insights for paleoclimate reconstruction in Motuo.
基金financially supported by the National Key Research and Development Program Project (2017YFC0404304)the National Natural Science Foundation of China (41361005)。
文摘The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.
基金supported by the National Key Research and Development Program on Monitoring, Early Warning and Prevention of Major Natural Disasters (Grant No. 2018YFC1506006)the National Natural Science Foundation of China (Project Nos. 41875108 and 41475037)
文摘Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.
文摘Abstract Episodic carbonate deposits on the Triassic continental slope in southern China are mainly composed of gravity-flow limestones and contourite limestones. Gravity-flow limestones were well developed in the lower and middle Yangtze area in the Early Triassic and in the Yunnan-Guizhou-Guangxi area in the Early and Middle Triassic. Five fundamental types of gravity-flow limestones are recognized: slide limestone, debris-flow limestone, grain-flow limestone, turbidite limestone and rockfall limestone. They form six types of assemblage beds: slide-debris-flow limestones, slide-debris-flow-turbidite limestone, slide-debris-flow-grain-flow-turbidite limestone, rockfall-debris-flow limestone, debris-flow-turbidite limestone, and debris-flow-grain-flow-turbidite limestone. The first two were formed mainly in the Early Triassic slopes. The Middle Triassic slopes were characterized by widespread rockfall limestone. Growth faults, storms, earthquakes and oversteepened slopes are considered to be the probable triggers of the gravity flows.
文摘针对复杂地质背景下的大陆架划界问题,提出了一种新的大陆坡脚点(foot point of the continental slope,FOS)确定方法。该方法基于水深平均梯度变化计算坡脚点所在位置,并结合相反证明以及凸包性、分段性、连续性原则进行优化。以莫桑比克南部陆缘为研究区域,利用2021年实测的高精度多波束地形数据,应用该方法提取了大陆架划界最关键的依据——FOS,并与联合国大陆架界限委员会使用的Geocap软件提取的结果进行对比,确认了相同的FOS位置,证明该方法是准确有效的。