期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CO_2 flux evaluation over the evergreen coniferous and broad-leaved mixed forest in Dinghushan, China 被引量:11
1
作者 WANG Chunlin, YU Guirui, ZHOU Guoyi, YAN Junhua, ZHANG Leiming, WANG Xu, TANG Xuli & SUN Xiaomin South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China Climate and Agrometeorology Center of Guangdong Province, China Meteorological Administration, Guangzhou 510080, China +1 位作者 Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China 《Science China Earth Sciences》 SCIE EI CAS 2006年第S2期127-138,共12页
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed fo... The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0μmol-1·m-2·s-1) flux data during windy conditions (u* > 0.2 m·s-1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem CO2 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol-1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m-2·s-1. Indistinctive seasonal variation of o or Amax was consistent with weak seasonal dynamics of leaf area index (LAI) in such a lower subtropical evergreen mixed forest. (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m-2 mon-1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated NEE was estimated as -43.2±29.6 gC·m-2·mon-1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as -563.0 and -441.2 gC·m-2·a-1 respectively, accounting for about 32% of GPP. 展开更多
关键词 carbon dioxide flux eddy covariance Dinghushan southern subtropical region evergreen coniferous and broad-leaved mixed forest ChinaFLUX.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部