从卫星云图、环流形势、水汽输送和冷平流作用等方面出发,对2000—2015年发生在青藏高原东北侧的中尺度对流复合体(MCC)进行综合分析,寻求该区域MCC特征,以有效提高该地区此类天气的预报、预警及防灾减灾服务能力。结果表明,2000—2015...从卫星云图、环流形势、水汽输送和冷平流作用等方面出发,对2000—2015年发生在青藏高原东北侧的中尺度对流复合体(MCC)进行综合分析,寻求该区域MCC特征,以有效提高该地区此类天气的预报、预警及防灾减灾服务能力。结果表明,2000—2015年,青藏高原东北侧MCC出现在秦岭南侧的占66%,多形成于后半夜;秦岭北侧的占34%,基本发生于傍晚至凌晨。MCC多出现在200 h Pa南亚高压反气旋的东北侧;对流层中低层,甘南、四川东部地区有低涡或切变配合;地面上,四川东部及陕南多为稳定少动的热低压控制。MCC发生时,南亚高压、低涡或切变相应东移,地面热低压北移,其北侧的冷高压同步南压明显。秦岭南侧的MCC多以对流单体发展或对流云团合并加强形成,此类MCC北伸、东移特征明显;秦岭北侧的MCC多为冷锋云系前部暖区的对流云团发展形成,该类MCC东移特征明显。青藏高原东北侧MCC的强降水往往出现在TBB梯度最大一侧,最大小时降雨量与TBB最低时段匹配较好。展开更多
基金the National Key Research and Development Program of China[grant number 2018YFA0606403]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA23090102]the National Natural Science Foundation of China[grant number 41822502].
文摘从卫星云图、环流形势、水汽输送和冷平流作用等方面出发,对2000—2015年发生在青藏高原东北侧的中尺度对流复合体(MCC)进行综合分析,寻求该区域MCC特征,以有效提高该地区此类天气的预报、预警及防灾减灾服务能力。结果表明,2000—2015年,青藏高原东北侧MCC出现在秦岭南侧的占66%,多形成于后半夜;秦岭北侧的占34%,基本发生于傍晚至凌晨。MCC多出现在200 h Pa南亚高压反气旋的东北侧;对流层中低层,甘南、四川东部地区有低涡或切变配合;地面上,四川东部及陕南多为稳定少动的热低压控制。MCC发生时,南亚高压、低涡或切变相应东移,地面热低压北移,其北侧的冷高压同步南压明显。秦岭南侧的MCC多以对流单体发展或对流云团合并加强形成,此类MCC北伸、东移特征明显;秦岭北侧的MCC多为冷锋云系前部暖区的对流云团发展形成,该类MCC东移特征明显。青藏高原东北侧MCC的强降水往往出现在TBB梯度最大一侧,最大小时降雨量与TBB最低时段匹配较好。