Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest v...Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.展开更多
Using a new vortex detection and tracing method, a dataset of the Southwest Vortex(SWV) is established based on Japanese 25-year Reanalysis(JRA-25) reanalysis data during 1979–2008. The spatiotemporal features of the...Using a new vortex detection and tracing method, a dataset of the Southwest Vortex(SWV) is established based on Japanese 25-year Reanalysis(JRA-25) reanalysis data during 1979–2008. The spatiotemporal features of the SWV are derived from the dataset. In comparison to other seasons, summer yields the least SWVs, but with the highest probability that they will migrate from their region of origin. SWVs mostly emerge in the southwest of the Sichuan Basin and the southeast of the Tibetan Plateau. Migratory SWVs mainly move along either an eastward or southeastward path. Detailed composite analysis of warm-season SWVs shows that the subtropical high is a key factor in determining the direction of migratory SWVs. Furthermore, the steering wind at 700 hPa dominates the moving direction of migratory SWVs. Potential stability diagnosed by pseudo-equivalent potential temperature ? se is of certain significance for the evolution and movement of SWVs. On the other hand, migratory SWVs possess relatively greater strength than stationary SWVs, due to a stronger low-level jet with enhanced baroclinicity and moisture transport providing more energy to support the growth of SWVs along their paths of movement.展开更多
Using atmospheric observational data from 1998 to 2013,station rainfall data,TRMM(Tropical Rainfall Measuring Mission) data,as well as annual statistics for the plateau vortex and shear line,the joint activity featu...Using atmospheric observational data from 1998 to 2013,station rainfall data,TRMM(Tropical Rainfall Measuring Mission) data,as well as annual statistics for the plateau vortex and shear line,the joint activity features of sustained departure plateau vortexes(SDPVs) and southwest vortexes(SWVs) are analyzed.Some new and useful observational facts and understanding are obtained about the joint activities of the two types of vortex.The results show that:(1) The joint active period of the two vortexes is from May to August,and mostly in June and July.(2) The SDPVs of the partnership mainly originate near Zaduo,while the SWVs come from Jiulong.(3) Most of the two vortexes move in almost the same direction,moving eastward together with the low trough.The SDPVs mainly act in the area to the north of the Yangtze River,while the SWVs are situated across the Yangtze River valley.(4) The joint activity of the two vortexes often produces sustained regional heavy rainfall to the south of the Yellow River,influencing wide areas of China,and even as far as the Korean Peninsula,Japan and Vietnam.(5) Most of the two vortexes are baroclinic or cold vortexes,and they both become strengthened in terms of their joint activity.(6) When the two vortexes move over the sea,their central pressure descends and their rainfall increases,especially for SWVs.(7) The two vortexes might spin over the same area simultaneously when there are tropical cyclones in the eastern and southern seas of China,or move southward together if a tropical cyclone appears near Hainan Island.展开更多
Energy budgets were analyzed to study the development of an eastward propagating southwest vortex (SWV) associated with heavy rainfall over southern China(11-13 June 2008).The results show that kinetic energy(KE) gene...Energy budgets were analyzed to study the development of an eastward propagating southwest vortex (SWV) associated with heavy rainfall over southern China(11-13 June 2008).The results show that kinetic energy(KE) generation and advection were the most important KE sources,while friction and sub-grid processes were the main KE sinks.There was downward conversion from divergent to rotational wind KE consistent with the downward stretching of SWVs.The Coriolis force was important for the formation and maintenance of the SWV.Convergence was also an important factor for maintenance,as was vertical motion during the mature stage of the SWV and the formation stage of a newly formed vortex(vortex B).The conversion from available potential energy(APE) to KE of divergent wind can lead to strong convection.Vertical motion influenced APE by dynamical and thermal processes which had opposite effects. The variation of APE was related to the heavy rainfall and convection;in this case,vertical motion with direct thermal circulation was the most important way in which APE was released,while latent heat release and vertical temperature advection were important for APE generation.展开更多
Statistical studies were conducted on the southwest vortex(SWV) during the summers of 2000–13 using high-resolution reanalysis data with a horizontal resolution of 0.5°× 0.5°. A total of 578 SWVs were ...Statistical studies were conducted on the southwest vortex(SWV) during the summers of 2000–13 using high-resolution reanalysis data with a horizontal resolution of 0.5°× 0.5°. A total of 578 SWVs were detected, with a maximum interannual frequency of 55. The variation of the interannual frequency featured a period of around six years. The most active period of SWVs was early July and the maximum occurrence of SWVs appeared in early morning(0200–0800 Beijing Standard Time(BST)). Most of the SWVs were short-lived, with only 66 cases(11.4%) lasting for more than 24 h. In addition, the moving tracks and three-dimensional shape of long-lived(≥ 36 h) SWVs are also presented. For those SWVs that lasted for more than 12 h, four types of SWVs(Types I–IV) were identified using a new method, and the results indicated that the dynamical and thermodynamical conditions before the formation of SWVs are effective indicators of the subsequent evolution of the vortex and associated severe weathers. Moreover, a further level of classification was also constructed for Type II SWVs, which accounted for the largest proportion out of Types I–IV, and the results indicated that the lifespan, radius and maximum 6-h precipitation were all closely related to the intensity of precipitation before the formation of SWVs.展开更多
Whether the initial conditions contain pronounced mesoscale signals is important to the simulation of the southwest vortex. An eastward-moving southwest vortex is simulated using the PSU/NCAR MM5. A modest degree of s...Whether the initial conditions contain pronounced mesoscale signals is important to the simulation of the southwest vortex. An eastward-moving southwest vortex is simulated using the PSU/NCAR MM5. A modest degree of success is achieved, but the most serious failure is that the formation and displacement of the simulated vortex in its early phase are about fourteen hours later than the observed vortex. Considering the relatively sparse data on the mesoscale vortex and in an attempt to understand the cause of the forecast failure, an adjoint model is used to examine the sensitivity of the southwest vortex to perturbations of initial conditions. The adjoint sensitivity indicates how small perturbations of model variables at the initial time in the model domain can influence the vortex. A large sensitivity for zonal wind is located under 400 hPa, a large sensitivity for meridional wind is located under 500 hPa, a large sensitivity for temperature is located between 500 and 900 hPa, and almost all of the large sensitivity areas are located in the southwestern area. Based on the adjoint sensitivity results, perturbations are added to initial conditions to improve the simulation of the southwest vortex. The results show that the initial conditions with perturbations can successfully simulate the formation and displacement of the vortex; the wind perturbations added to the initial conditions appear to be a cyclone circulation under the middle level of the atmosphere in the southwestern area with an anticyclone circulation to its southwest; a water vapor perturbation added to initial conditions can strengthen the vortex and the speed of its displacement.展开更多
Based on the temperature of the black body (TBB),station observed and NCEP reanalysis data,the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the southwest vortex (SWV) for...Based on the temperature of the black body (TBB),station observed and NCEP reanalysis data,the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the southwest vortex (SWV) formation that occurred at 1800 UTC on 29 June 2003 are analyzed by using the Zwack-Okossi (Z-O) equation to diagnose the thermal and dynamic processes.It is found that,in summer,severe convective activities often occur over the Tibetan Plateau due to the abundant supply of moisture.The convective cloud near the east edge of the plateau could move eastward with a shortwave trough in the westerly.The divergent center that is induced by latent heat release,which is associated with severe convective activities,moves out with the convective cloud and contributes to the low level decompression which is favorable for the formation of plateau edge cyclogenesis (PEC).The Z-O equation indicates that,in this case,the latent heat release and convergence are the two most important factors for SWV formation,which amounts to about 42% and 15% of the term TOTAL,respectively.It is implied that the thermal process effect was more important than the dynamic process during SWV formation.展开更多
An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China...An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China Vortex(SWCV).The physical mechanism for this event was investigated from Potential Vorticity(PV)and omega perspectives based on MERRA-2 reanalysis data.The cyclogenesis of the TPV over the northwestern TP along with the lower-tropospheric SWCV was found to involve a midtropospheric large-scale flow reconfiguration across western and eastern China with the formation of a high-amplitude Rossby wave.Subsequently,the eastward-moving TPV coalesced vertically with the SWCV over the eastern Sichuan Basin due to the positive vertical gradient of the TPV-related PV advection,leading the lower-tropospheric jet associated with moisture transport to intensify greatly and converge over the downstream MLY.The merged TPV−SWCV specially facilitated the upper-tropospheric isentropic-gliding ascending motion over the MLY.With the TPV-embedded mid-tropospheric trough migrating continuously eastward,the almost stagnant SWCV was re-separated from the overlying TPV,forming a more eastward-tilted high-PV configuration to trigger stronger ascending motion including isentropic-gliding,isentropic-displacement,and diabatic heating-related ascending components over the MLY.This led to more intense rainfall.Quantitative PV diagnoses demonstrate that both the coalescence and subsequent re-separation processes of the TPV with the SWCV were largely dominated by horizontal PV advection and PV generation due to vertically nonuniform diabatic heating,as well as the feedback of condensation latent heating on the isentropic-displacement vertical velocity.展开更多
The structure and organization of the extreme-rain-producing deep convection towers and their roles in the formation of a southwest vortex(SWV)event are studied using the intensified surface rainfall observations,weat...The structure and organization of the extreme-rain-producing deep convection towers and their roles in the formation of a southwest vortex(SWV)event are studied using the intensified surface rainfall observations,weather radar data and numerical simulations from a high-resolution convection-allowing model.The deep convection towers occurred prior to the emergence of SWV and throughout its onset and development stages.They largely resemble the vortical hot tower(VHT)commonly seen in typhoons or hurricanes and are thus considered as a special type of VHT(sVHT).Each sVHT presented a vorticity dipole structure,with the upward motion not superpose the positive vorticity.A positive feedback process in the SWV helped the organization of sVHTs,which in turn strengthened the initial disturbance and development of SWV.The meso-γ-scale large-value areas of positive relative vorticity in the mid-toupper troposphere were largely induced by the diabatic heating and tilting.The strong mid-level convergence was attributed to the mid-level vortex enhancement.The low-level vortex intensification was mainly due to low-level convergence and the stretching of upward flow.The meso-α-scale large-value areas of positive relative vorticity in the low-level could expand up to about 400 hPa,and gradually weakened with time and height due to the decaying low-level convergence and vertical stretching in the matured SWV.As the SWV matured,two secondary circulations were formed,with a weaker mean radial inflow than the outflow and elevated to 300-400 hPa.展开更多
A strong precipitation event caused by the southwest vortex(SWV), which affected Sichuan Province and Chongqing municipality in Southwest China on 10–14 July 2012, is investigated. The SWV is examined using satelli...A strong precipitation event caused by the southwest vortex(SWV), which affected Sichuan Province and Chongqing municipality in Southwest China on 10–14 July 2012, is investigated. The SWV is examined using satellite observations from AIRS(Atmospheric Infrared Sounder), in situ measurements from the SWV intensive observation campaign, and MICAPS(Marine Interactive Computer-Aided Provisioning System) data. Analysis of this precipitation process revealed that:(1)heavy rain occurred during the development phase, and cloud water content increased significantly after the dissipation of the SWV;(2) the area with low outgoing longwave radiation values from AIRS correlated well with the SWV;(3) variation of the temperature of brightness blackbody(TBB) from AIRS reflected the evolution of the SWV, and the values of TBB reduced significantly during the SWV's development; and(4) strong temperature and water vapor inversions were noted during the development of the SWV. The moisture profile displayed large vertical variation during the SWV's puissant phase,with the moisture inversion occurring at low levels. The moisture content during the receding phase was significantly reduced compared with that during the developing and puissant phases. The vertical flux of vapor divergence explained the variation of the moisture profile. These results also indicate the potential for using AIRS products in studying severe weather over the Tibetan Plateau and its surroundings, where in situ measurements are sparse.展开更多
[Objective] The aim was to study the prediction of summer rainstorm induced by southwest vortex.[Method] Based on 2.5°×2.5° re-analysis data in four time points a day from June to August during 1971-200...[Objective] The aim was to study the prediction of summer rainstorm induced by southwest vortex.[Method] Based on 2.5°×2.5° re-analysis data in four time points a day from June to August during 1971-2008 at 700 hPa in northern hemisphere provided by NECP,rainstorm and southwest vortex from June to August in Guizhou Province were studied systematically,and the forecast data of rainstorm induced by southest vortex was obtained.[Result] Southwest vortex was one of major systems influencing rainstorm in flood season(from June to August),especially in June and July;the occurrence of this kind of rainstorm was closely related to the moving path of southwest vortex,activity of cold air,environmental flow field at 500 hPa,shear line at 850 hPa,southwest jet,position of subtropical high ridge,water vapour conditions,vorticity field,etc.On the basis of factual data,objective forecast system was established and verified by means of similar method and physical diagnosis.The results showed that it was rational to choose upper trough,southwest vortex,conditions of vertical movement,southwest jet,water vapour conditions,etc.as forecast factors;when the center of southwest vortex was located in major key area(100°-105° E,25°-35° N),and secondary key area(105°-108° E,25°-35° N),regional rainstorm occurred most easily,especially in major key area with high frequency of rainstorm.[Conclusion] The study could provide references for the improvement of prediction level of rainstorm induced by southwest vortex,disaster prevention and reduction.展开更多
Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic...Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic circulations and maintenance mechanisms between different PHRE types.There are two main types of PHREs:one is characterized by a rain belt west of 106°E over the SCB(WSB-PHREs),and the other features a rain belt east of 106°E over the SCB(ESB-PHREs).In total,there are 18 ESB-PHREs and 10 WSB-PHREs during the study period.Overall,the rain belts of WSB-PHREs are along the terrain distribution east of the Tibetan Plateau,while the precipitation intensity of ESB-PHREs is stronger.For the two types of PHREs,the shortwave trough over the SCB and the western Pacific subtropical high act as their favorable background environments,particularly for ESB-PHREs.The water vapor of WSB-PHREs is mainly transported from the South China Sea,whereas for ESB-PHREs the South China Sea and Bay of Bengal are their main moisture sources.The composite vorticity budgets of southwest vortices during their mature stage indicate that the convergence effect is a dominant factor for maintaining the two types of PHREs,and the strong vertical vorticity advection is also favorable,but the relative contribution of vertical advection is larger for WSB-PHREs.展开更多
In this study, kinetic energy budget equations of rotational and divergent flow in pressure coordinates are derived on terrain-following coordinates. The new formulation explicitly shows the terrain effects and can be...In this study, kinetic energy budget equations of rotational and divergent flow in pressure coordinates are derived on terrain-following coordinates. The new formulation explicitly shows the terrain effects and can be applied directly to model-simulated dynamic and thermodynamic fields on the model's original vertical grid. Such application eliminates interpolation error and avoids errors in virtual weather systems in mountainous areas. These advantages and their significance are demonstrated by a numerical study in terrain-following coordinates of a developing vortex after it moves over the Tibetan Plateau in China.展开更多
By using the conventional data,the rainfall data in the automatic weather station and so on,a regional heavy rainstorm which happened in the northwest and north central region of Shandong Province during May 9-10,2009...By using the conventional data,the rainfall data in the automatic weather station and so on,a regional heavy rainstorm which happened in the northwest and north central region of Shandong Province during May 9-10,2009 was analyzed.The results showed that the cooling shear line in low altitude was the main system which caused the heavy rainstorm.The rainstorm mainly happened on the left front of jet stream in low altitude,the right of cooling shear line in low altitude and the northeast quadrant of vortex.The southwest jet stream in the west of subtropical high established a water vapor passage from the South China Sea to the center of North China.It not only provided warm and wet air and energy for the development of heavy rainstorm,but also was the necessary condition which shear line in low altitude stagnated for a long time.Ground frontal cyclone was the trigger mechanism of rainstorm.The northeast wet and cold air joined with the southwest warm and wet air in Shandong after the front,which prompted the development of convection and the release of instable energy to form the rainstorm.展开更多
During the mei-yu period,the east edge of the Tibetan Plateau and the Dabie Mountain are two main sources of eastward-moving mesoscale vortices along the mei-yu front(MYF).In this study,an eastward-moving southwest vo...During the mei-yu period,the east edge of the Tibetan Plateau and the Dabie Mountain are two main sources of eastward-moving mesoscale vortices along the mei-yu front(MYF).In this study,an eastward-moving southwest vortex(SWV) and an eastward-moving Dabie vortex(DBV) during the mei-yu period of 2010 have been investigated to clarify the main similarities and differences between them.The synoptic analyses reveal that the SWV and DBV were both located at the lower troposphere;however,the SWV developed in a "from top down" trend,whereas the DBV developed in an opposite way.There were obvious surface closed low centers corresponding to the DBV during its life span,whereas for the SWV,the closed low center only appeared at the mature stage.Cold and warm air intersected intensely after the formation of both the vortices,and the cold advection in the SWV case was stronger than that in the DBV case,whereas the warm advection in the DBV case was more intense than that in the SWV case.The Bay of Bengal and the South China Sea were main moisture sources for the SWV,whereas for the DBV,in addition to the above two moisture sources,the East China Sea was also an important moisture source.The vorticity budget indicates that the convergence was the most important common factor conducive to the formation,development,and maintenance of the SWV and DBV,whereas the conversion from the vertical vorticity to the horizontal one(tilting) was the most important common factor caused the dissipation of both of the vortices.The kinetic energy(KE) budget reveals that the KE generation by the rotational wind was the dominant factor for the enhancement of KE associated with the SWV,whereas for the DBV,the KE transport by the rotational wind was more important than the KE generation.The KE associated with the SWV and the DBV weakened with different mechanisms during the decaying stage.Furthermore,the characteristics of baroclinic and barotropic energy conversions during the life spans of both vortices indicate that the SWV and DBV both belong to the kind of subtropical mesoscale vortices.展开更多
基金Key Project of Joint Meteorological Fund of the National Natural Science Foundation of China (U2242202)Key Project of the National Natural Science Foundation of China (42030611)+1 种基金Innovative Development Special Project of China Meteorological Administration (CXFZ2023J016)Innovation Team Fund of Sichuan Provincial Meteorological Service (SCQXCX7D-202201)。
文摘Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41275064 and 41175057)the Public Science and Technology Research Fund Projects of the Ocean (Grant No. 201005019)
文摘Using a new vortex detection and tracing method, a dataset of the Southwest Vortex(SWV) is established based on Japanese 25-year Reanalysis(JRA-25) reanalysis data during 1979–2008. The spatiotemporal features of the SWV are derived from the dataset. In comparison to other seasons, summer yields the least SWVs, but with the highest probability that they will migrate from their region of origin. SWVs mostly emerge in the southwest of the Sichuan Basin and the southeast of the Tibetan Plateau. Migratory SWVs mainly move along either an eastward or southeastward path. Detailed composite analysis of warm-season SWVs shows that the subtropical high is a key factor in determining the direction of migratory SWVs. Furthermore, the steering wind at 700 hPa dominates the moving direction of migratory SWVs. Potential stability diagnosed by pseudo-equivalent potential temperature ? se is of certain significance for the evolution and movement of SWVs. On the other hand, migratory SWVs possess relatively greater strength than stationary SWVs, due to a stronger low-level jet with enhanced baroclinicity and moisture transport providing more energy to support the growth of SWVs along their paths of movement.
基金supported by project funds from the National Natural Science Foundation of China(Grant Nos.91332715 and 41275052)the National Key Foundation Development Study Developing(973)Programme(Grant No.2012CB417202)
文摘Using atmospheric observational data from 1998 to 2013,station rainfall data,TRMM(Tropical Rainfall Measuring Mission) data,as well as annual statistics for the plateau vortex and shear line,the joint activity features of sustained departure plateau vortexes(SDPVs) and southwest vortexes(SWVs) are analyzed.Some new and useful observational facts and understanding are obtained about the joint activities of the two types of vortex.The results show that:(1) The joint active period of the two vortexes is from May to August,and mostly in June and July.(2) The SDPVs of the partnership mainly originate near Zaduo,while the SWVs come from Jiulong.(3) Most of the two vortexes move in almost the same direction,moving eastward together with the low trough.The SDPVs mainly act in the area to the north of the Yangtze River,while the SWVs are situated across the Yangtze River valley.(4) The joint activity of the two vortexes often produces sustained regional heavy rainfall to the south of the Yellow River,influencing wide areas of China,and even as far as the Korean Peninsula,Japan and Vietnam.(5) Most of the two vortexes are baroclinic or cold vortexes,and they both become strengthened in terms of their joint activity.(6) When the two vortexes move over the sea,their central pressure descends and their rainfall increases,especially for SWVs.(7) The two vortexes might spin over the same area simultaneously when there are tropical cyclones in the eastern and southern seas of China,or move southward together if a tropical cyclone appears near Hainan Island.
基金supported by the project of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences (Grant No.2010LASW-A02)National Natural Science Foundation of China(Grant No.40875021)+1 种基金the project of the National Key Basic Research and Development of China(No.2009CB421401)the Chinese Special Scientific Research Project for Public Interest(Grant No. GYHY200906004).
文摘Energy budgets were analyzed to study the development of an eastward propagating southwest vortex (SWV) associated with heavy rainfall over southern China(11-13 June 2008).The results show that kinetic energy(KE) generation and advection were the most important KE sources,while friction and sub-grid processes were the main KE sinks.There was downward conversion from divergent to rotational wind KE consistent with the downward stretching of SWVs.The Coriolis force was important for the formation and maintenance of the SWV.Convergence was also an important factor for maintenance,as was vertical motion during the mature stage of the SWV and the formation stage of a newly formed vortex(vortex B).The conversion from available potential energy(APE) to KE of divergent wind can lead to strong convection.Vertical motion influenced APE by dynamical and thermal processes which had opposite effects. The variation of APE was related to the heavy rainfall and convection;in this case,vertical motion with direct thermal circulation was the most important way in which APE was released,while latent heat release and vertical temperature advection were important for APE generation.
基金supported by a project of the Chengdu Institute of Plateau Meteorology, CMA (Grant No. LPM2011006)the State Grid Science & Technology Project (GC71-13-007)the National Natural Science Foundation of China (Grant Nos. 41205027, 41375053, and 41375058)
文摘Statistical studies were conducted on the southwest vortex(SWV) during the summers of 2000–13 using high-resolution reanalysis data with a horizontal resolution of 0.5°× 0.5°. A total of 578 SWVs were detected, with a maximum interannual frequency of 55. The variation of the interannual frequency featured a period of around six years. The most active period of SWVs was early July and the maximum occurrence of SWVs appeared in early morning(0200–0800 Beijing Standard Time(BST)). Most of the SWVs were short-lived, with only 66 cases(11.4%) lasting for more than 24 h. In addition, the moving tracks and three-dimensional shape of long-lived(≥ 36 h) SWVs are also presented. For those SWVs that lasted for more than 12 h, four types of SWVs(Types I–IV) were identified using a new method, and the results indicated that the dynamical and thermodynamical conditions before the formation of SWVs are effective indicators of the subsequent evolution of the vortex and associated severe weathers. Moreover, a further level of classification was also constructed for Type II SWVs, which accounted for the largest proportion out of Types I–IV, and the results indicated that the lifespan, radius and maximum 6-h precipitation were all closely related to the intensity of precipitation before the formation of SWVs.
文摘Whether the initial conditions contain pronounced mesoscale signals is important to the simulation of the southwest vortex. An eastward-moving southwest vortex is simulated using the PSU/NCAR MM5. A modest degree of success is achieved, but the most serious failure is that the formation and displacement of the simulated vortex in its early phase are about fourteen hours later than the observed vortex. Considering the relatively sparse data on the mesoscale vortex and in an attempt to understand the cause of the forecast failure, an adjoint model is used to examine the sensitivity of the southwest vortex to perturbations of initial conditions. The adjoint sensitivity indicates how small perturbations of model variables at the initial time in the model domain can influence the vortex. A large sensitivity for zonal wind is located under 400 hPa, a large sensitivity for meridional wind is located under 500 hPa, a large sensitivity for temperature is located between 500 and 900 hPa, and almost all of the large sensitivity areas are located in the southwestern area. Based on the adjoint sensitivity results, perturbations are added to initial conditions to improve the simulation of the southwest vortex. The results show that the initial conditions with perturbations can successfully simulate the formation and displacement of the vortex; the wind perturbations added to the initial conditions appear to be a cyclone circulation under the middle level of the atmosphere in the southwestern area with an anticyclone circulation to its southwest; a water vapor perturbation added to initial conditions can strengthen the vortex and the speed of its displacement.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40875021 and 40930951)the project of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences (Grant No. 2009LASW-A03)
文摘Based on the temperature of the black body (TBB),station observed and NCEP reanalysis data,the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the southwest vortex (SWV) formation that occurred at 1800 UTC on 29 June 2003 are analyzed by using the Zwack-Okossi (Z-O) equation to diagnose the thermal and dynamic processes.It is found that,in summer,severe convective activities often occur over the Tibetan Plateau due to the abundant supply of moisture.The convective cloud near the east edge of the plateau could move eastward with a shortwave trough in the westerly.The divergent center that is induced by latent heat release,which is associated with severe convective activities,moves out with the convective cloud and contributes to the low level decompression which is favorable for the formation of plateau edge cyclogenesis (PEC).The Z-O equation indicates that,in this case,the latent heat release and convergence are the two most important factors for SWV formation,which amounts to about 42% and 15% of the term TOTAL,respectively.It is implied that the thermal process effect was more important than the dynamic process during SWV formation.
基金This research was jointly supported by the National Natural Science Foundation of China(Grant Nos.41730963 and 41876020)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000).
文摘An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China Vortex(SWCV).The physical mechanism for this event was investigated from Potential Vorticity(PV)and omega perspectives based on MERRA-2 reanalysis data.The cyclogenesis of the TPV over the northwestern TP along with the lower-tropospheric SWCV was found to involve a midtropospheric large-scale flow reconfiguration across western and eastern China with the formation of a high-amplitude Rossby wave.Subsequently,the eastward-moving TPV coalesced vertically with the SWCV over the eastern Sichuan Basin due to the positive vertical gradient of the TPV-related PV advection,leading the lower-tropospheric jet associated with moisture transport to intensify greatly and converge over the downstream MLY.The merged TPV−SWCV specially facilitated the upper-tropospheric isentropic-gliding ascending motion over the MLY.With the TPV-embedded mid-tropospheric trough migrating continuously eastward,the almost stagnant SWCV was re-separated from the overlying TPV,forming a more eastward-tilted high-PV configuration to trigger stronger ascending motion including isentropic-gliding,isentropic-displacement,and diabatic heating-related ascending components over the MLY.This led to more intense rainfall.Quantitative PV diagnoses demonstrate that both the coalescence and subsequent re-separation processes of the TPV with the SWCV were largely dominated by horizontal PV advection and PV generation due to vertically nonuniform diabatic heating,as well as the feedback of condensation latent heating on the isentropic-displacement vertical velocity.
基金Operational Technology Research Team Project of Chongqing Meteorological Service(YWGGTD-201702)Technology Innovation and Application Development Key Project of Chongqing(cstc2019jscx-tjsb X0007)Natural Science Foundation of Chongqing(cstc2018jcyj AX0434)。
文摘The structure and organization of the extreme-rain-producing deep convection towers and their roles in the formation of a southwest vortex(SWV)event are studied using the intensified surface rainfall observations,weather radar data and numerical simulations from a high-resolution convection-allowing model.The deep convection towers occurred prior to the emergence of SWV and throughout its onset and development stages.They largely resemble the vortical hot tower(VHT)commonly seen in typhoons or hurricanes and are thus considered as a special type of VHT(sVHT).Each sVHT presented a vorticity dipole structure,with the upward motion not superpose the positive vorticity.A positive feedback process in the SWV helped the organization of sVHTs,which in turn strengthened the initial disturbance and development of SWV.The meso-γ-scale large-value areas of positive relative vorticity in the mid-toupper troposphere were largely induced by the diabatic heating and tilting.The strong mid-level convergence was attributed to the mid-level vortex enhancement.The low-level vortex intensification was mainly due to low-level convergence and the stretching of upward flow.The meso-α-scale large-value areas of positive relative vorticity in the low-level could expand up to about 400 hPa,and gradually weakened with time and height due to the decaying low-level convergence and vertical stretching in the matured SWV.As the SWV matured,two secondary circulations were formed,with a weaker mean radial inflow than the outflow and elevated to 300-400 hPa.
基金supported by the Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201206042)the National Natural Science Foundation of China(Grant No.41675057,91337215)
文摘A strong precipitation event caused by the southwest vortex(SWV), which affected Sichuan Province and Chongqing municipality in Southwest China on 10–14 July 2012, is investigated. The SWV is examined using satellite observations from AIRS(Atmospheric Infrared Sounder), in situ measurements from the SWV intensive observation campaign, and MICAPS(Marine Interactive Computer-Aided Provisioning System) data. Analysis of this precipitation process revealed that:(1)heavy rain occurred during the development phase, and cloud water content increased significantly after the dissipation of the SWV;(2) the area with low outgoing longwave radiation values from AIRS correlated well with the SWV;(3) variation of the temperature of brightness blackbody(TBB) from AIRS reflected the evolution of the SWV, and the values of TBB reduced significantly during the SWV's development; and(4) strong temperature and water vapor inversions were noted during the development of the SWV. The moisture profile displayed large vertical variation during the SWV's puissant phase,with the moisture inversion occurring at low levels. The moisture content during the receding phase was significantly reduced compared with that during the developing and puissant phases. The vertical flux of vapor divergence explained the variation of the moisture profile. These results also indicate the potential for using AIRS products in studying severe weather over the Tibetan Plateau and its surroundings, where in situ measurements are sparse.
文摘[Objective] The aim was to study the prediction of summer rainstorm induced by southwest vortex.[Method] Based on 2.5°×2.5° re-analysis data in four time points a day from June to August during 1971-2008 at 700 hPa in northern hemisphere provided by NECP,rainstorm and southwest vortex from June to August in Guizhou Province were studied systematically,and the forecast data of rainstorm induced by southest vortex was obtained.[Result] Southwest vortex was one of major systems influencing rainstorm in flood season(from June to August),especially in June and July;the occurrence of this kind of rainstorm was closely related to the moving path of southwest vortex,activity of cold air,environmental flow field at 500 hPa,shear line at 850 hPa,southwest jet,position of subtropical high ridge,water vapour conditions,vorticity field,etc.On the basis of factual data,objective forecast system was established and verified by means of similar method and physical diagnosis.The results showed that it was rational to choose upper trough,southwest vortex,conditions of vertical movement,southwest jet,water vapour conditions,etc.as forecast factors;when the center of southwest vortex was located in major key area(100°-105° E,25°-35° N),and secondary key area(105°-108° E,25°-35° N),regional rainstorm occurred most easily,especially in major key area with high frequency of rainstorm.[Conclusion] The study could provide references for the improvement of prediction level of rainstorm induced by southwest vortex,disaster prevention and reduction.
基金supported by the National Key R&D Program of China[grant number 2018YFC0809400]the National Natural Science Foundation of China[grant number 41975057].
文摘Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic circulations and maintenance mechanisms between different PHRE types.There are two main types of PHREs:one is characterized by a rain belt west of 106°E over the SCB(WSB-PHREs),and the other features a rain belt east of 106°E over the SCB(ESB-PHREs).In total,there are 18 ESB-PHREs and 10 WSB-PHREs during the study period.Overall,the rain belts of WSB-PHREs are along the terrain distribution east of the Tibetan Plateau,while the precipitation intensity of ESB-PHREs is stronger.For the two types of PHREs,the shortwave trough over the SCB and the western Pacific subtropical high act as their favorable background environments,particularly for ESB-PHREs.The water vapor of WSB-PHREs is mainly transported from the South China Sea,whereas for ESB-PHREs the South China Sea and Bay of Bengal are their main moisture sources.The composite vorticity budgets of southwest vortices during their mature stage indicate that the convergence effect is a dominant factor for maintaining the two types of PHREs,and the strong vertical vorticity advection is also favorable,but the relative contribution of vertical advection is larger for WSB-PHREs.
基金supported by the Key Program of the Chinese Academy of Sciences(No.KZZD-EW-05-01)the Supporting Program for Science and Technological Research of China(No.2008BAC37B01)+1 种基金the National Basic Research Program of China(Nos.2012CB417201 and 2009CB421505)the National Natural Sciences Foundation of China(Nos.41205033 and 41175056)
文摘In this study, kinetic energy budget equations of rotational and divergent flow in pressure coordinates are derived on terrain-following coordinates. The new formulation explicitly shows the terrain effects and can be applied directly to model-simulated dynamic and thermodynamic fields on the model's original vertical grid. Such application eliminates interpolation error and avoids errors in virtual weather systems in mountainous areas. These advantages and their significance are demonstrated by a numerical study in terrain-following coordinates of a developing vortex after it moves over the Tibetan Plateau in China.
文摘By using the conventional data,the rainfall data in the automatic weather station and so on,a regional heavy rainstorm which happened in the northwest and north central region of Shandong Province during May 9-10,2009 was analyzed.The results showed that the cooling shear line in low altitude was the main system which caused the heavy rainstorm.The rainstorm mainly happened on the left front of jet stream in low altitude,the right of cooling shear line in low altitude and the northeast quadrant of vortex.The southwest jet stream in the west of subtropical high established a water vapor passage from the South China Sea to the center of North China.It not only provided warm and wet air and energy for the development of heavy rainstorm,but also was the necessary condition which shear line in low altitude stagnated for a long time.Ground frontal cyclone was the trigger mechanism of rainstorm.The northeast wet and cold air joined with the southwest warm and wet air in Shandong after the front,which prompted the development of convection and the release of instable energy to form the rainstorm.
基金supported by the project of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(Grant No. 2010LASW-A02)National Natural Science Foundation of China(Grant Nos.40930951 and 41040037)+1 种基金Chinese Special Scientific Research Project for Public Interest(Grant No.GYHY200906004)National Key Basic Research and Development Project(Grant No.2010CB951804)
文摘During the mei-yu period,the east edge of the Tibetan Plateau and the Dabie Mountain are two main sources of eastward-moving mesoscale vortices along the mei-yu front(MYF).In this study,an eastward-moving southwest vortex(SWV) and an eastward-moving Dabie vortex(DBV) during the mei-yu period of 2010 have been investigated to clarify the main similarities and differences between them.The synoptic analyses reveal that the SWV and DBV were both located at the lower troposphere;however,the SWV developed in a "from top down" trend,whereas the DBV developed in an opposite way.There were obvious surface closed low centers corresponding to the DBV during its life span,whereas for the SWV,the closed low center only appeared at the mature stage.Cold and warm air intersected intensely after the formation of both the vortices,and the cold advection in the SWV case was stronger than that in the DBV case,whereas the warm advection in the DBV case was more intense than that in the SWV case.The Bay of Bengal and the South China Sea were main moisture sources for the SWV,whereas for the DBV,in addition to the above two moisture sources,the East China Sea was also an important moisture source.The vorticity budget indicates that the convergence was the most important common factor conducive to the formation,development,and maintenance of the SWV and DBV,whereas the conversion from the vertical vorticity to the horizontal one(tilting) was the most important common factor caused the dissipation of both of the vortices.The kinetic energy(KE) budget reveals that the KE generation by the rotational wind was the dominant factor for the enhancement of KE associated with the SWV,whereas for the DBV,the KE transport by the rotational wind was more important than the KE generation.The KE associated with the SWV and the DBV weakened with different mechanisms during the decaying stage.Furthermore,the characteristics of baroclinic and barotropic energy conversions during the life spans of both vortices indicate that the SWV and DBV both belong to the kind of subtropical mesoscale vortices.