Delayed sowing mitigates lodging in wheat. However, the mechanism underlying the enhanced lodging resistance in wheat has yet to be fully elucidated. Field experiments were conducted to investigate the effects of sowi...Delayed sowing mitigates lodging in wheat. However, the mechanism underlying the enhanced lodging resistance in wheat has yet to be fully elucidated. Field experiments were conducted to investigate the effects of sowing date on lignin and cellulose metabolism, stem morphological characteristics, lodging resistance, and grain yield. Seeds of Tainong 18,a winter wheat variety, were sown on October 8(normal sowing) and October 22(late sowing) during both of the 2015–2016 and 2016–2017 growing seasons. The results showed that late sowing enhanced the lodging resistance of wheat by improving the biosynthesis and accumulation of lignin and cellulose. Under late sowing, the expression levels of key genes(Ta PAL, Ta CCR, Ta COMT, TaCAD, and TaCesA1, 3, 4, 7, and 8) and enzyme activities(TaPAL and TaCAD) related to lignin and cellulose biosynthesis peaked 4–12 days earlier, and except for the TaPAL, TaCCR, and TaCesA1 genes and TaPAL, in most cases they were significantly higher than under normal sowing. As a result, lignin and cellulose accumulated quickly during the stem elongation stage. The mean and maximum accumulation rates of lignin and cellulose increased, the maximum accumulation contents of lignin and cellulose were higher, and the cellulose accumulation duration was prolonged. Consequently, the lignin/cellulose ratio and lignin content were increased from 0 day and the cellulose content was increased from 11 days after jointing onward. Our main finding is that the improved biosynthesis and accumulation of lignin and cellulose were responsible for increasing the stem-filling degree, breaking strength, and lodging resistance. The major functional genes enhancing lodging resistance in wheat that are induced by delayed sowing need to be determined.展开更多
Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance.This study aims to reveal the effects of sowing date and ecological points on the climate resources...Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance.This study aims to reveal the effects of sowing date and ecological points on the climate resources associated with wheat yield in the Rice–Wheat Rotation System.With six sowing dates,the experiments were carried out in Donghai and Jianhu counties,Jiangsu Province,China using two semi-winter wheat varieties as the objects of this study.The basic seedlings of the first sowing date (S1) were planted at 300×10^(4)plants ha^(-1),which was increased by 10%for each of the delayed sowing dates (S2–S6).The results showed that the delay of sowing date decreased the number of days,the effective accumulated temperature and the cumulative solar radiation in the whole growth period.The yields of S1 were higher than those of S2 to S6 by 0.22–0.31,0.5–0.78,0.86–0.98,1.14–1.38,and 1.36–1.59 t ha^(–1),respectively.For a given sowing date,the growth days increased as the ecological point was moved north,while both mean daily temperature and effective accumulative temperature decreased,but the cumulative radiation increased.As a result,the yields at Donghai County were 0.01–0.39 t ha–1lower than those of Jianhu County for the six sowing dates.The effective accumulative temperature and cumulative radiation both had significant positive correlations with yield.The average temperature was significantly negatively correlated with the yield.The decrease in grain yield was mainly due to the declines in grains per spike and 1 000-grain weight caused by the increase in the daily temperature and the decrease in the effective accumulative temperature.展开更多
Delays in sowing have significant effects on the grain yield,yield components,and grain protein concentrations of winter wheat.However,little is known about how delayed sowing affects these characteristics at differen...Delays in sowing have significant effects on the grain yield,yield components,and grain protein concentrations of winter wheat.However,little is known about how delayed sowing affects these characteristics at different positions in the wheat spikes.In this study,the effects of sowing date were investigated in a winter wheat cultivar,Shannong 30,which was sown in 2019 and 2020 on October 8(normal sowing)and October 22(late sowing)under field conditions.Delayed sowing increased the partitioning of ^(13)C-assimilates to spikes,particularly to florets at the apical section of a spike and those occupying distal positions on the same spikelet.Consequently,the increase in grain number was the greatest for the apical sections,followed by the basal and central sections.No significant differences were observed between sowing dates in the superior grain number in the basal and central sections,while the number in apical sections was significantly different.The number of inferior grains in each section also increased substantially in response to delayed sowing.The average grain weights in all sections remained unchanged under delayed sowing because there were parallel increases in grain number and ^(13)C-assimilate partitioning to grains at specific positions in the spikes.Increases in grain number m^(–2) resulted in reduced grain protein concentrations as the limited nitrogen supply was diluted into more grains.Delayed sowing caused the greatest reduction in grain protein concentration in the basal sections,followed by the central and apical sections.No significant differences in the reduction of the grain protein concentration were observed between the inferior and superior grains under delayed sowing.In conclusion,a 2-week delay in sowing improved grain yield through increased grain number per spike,which originated principally from an increased grain number in the apical sections of spikes and in distal positions on the same spikelet.However,grain protein concentrations declined in each section because of the increased grain number and reduced N uptake.展开更多
[Objectives]This study aimed to investigate the effect of sowing rate,fertilizer amount and light on yield of Cichorium glandulosum Boiss.et Huet.[Methods]The Latin square design was adopted to investigate the effect ...[Objectives]This study aimed to investigate the effect of sowing rate,fertilizer amount and light on yield of Cichorium glandulosum Boiss.et Huet.[Methods]The Latin square design was adopted to investigate the effect of sowing rate+fertilizer amount,sowing rate+light on root and seed yield of C.glandulosum Boiss.et Huet.The changes in the seed and root yield of C.glandulosum Boiss.et Huet.under the influence of sowing rate,N application rate and light were compared and analyzed.[Results]In Moyu,Hotan and similar areas,the suitable sowing rate of C.glandulosum Boiss.et Huet.was 4.5-15.0 kg/ha.Without applying fertilizer,if the main purpose is to harvest the roots,the sowing rate of C.glandulosum Boiss.et Huet.is recommended to be 7.5-15.0 kg/ha;and if the main purpose is to harvest the seeds,the sowing rate is recommended to be 4.5-7.5 kg/ha.Shading will affect the root and seed yield.At the fertilizer amount of 450 kg/ha,the optimal sowing rate of C.glandulosum Boiss.et Huet.is 4.5 kg/ha.[Conclusions]This study provides a certain reference basis for artificial cultivation of C.glandulosum Boiss.et Huet.展开更多
To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequenci...To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequencies(high frequency and low frequency)and one double film cover winter irrigation control treatment(CK:2250 m^(3)/hm^(2))were set up to analyze the spatial distribution patterns of soil water and salt environment and root density in dry sown and wet emerged cotton fields under diffe-rent moisture control conditions.The results show that the soil water content and water infiltration range gradually become larger with the increase of seedling water quantity,and the larger the seedling water quantity,the higher the soil water content.With the same seedling water quantity,the soil water content of the high-frequency(HF)treatment becomes obviously larger.The soil conductivity of each treatment tends to decrease gradually with the increase of seedling water and drip frequency,among which the distribution of soil conductivity of S6 treatment is closest to that of CK.With the increase in soil depth,the soil conductivity tends to increase first and then decrease.Compared with the low-frequency(LF)treatment,the high-frequency treatment shows a significantly deeper soil salt accumulation layer.The root length density(RLD)of cotton gradually increases with the amount of seedling water and the frequency of dripping.The soil layer of root distribution gradually deepens with the amount of seedling water in the vertical direction,and the RLD value in the horizontal direction is significantly greater in the mulched area than that in the bare area between films.This research can serve as a solid scientific foundation for the use of dry sowing and wet emergence techniques in cotton fields in southern Xinjiang.展开更多
The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective pra...The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective practices that increase peanut yield by improving plant architecture,lodging resistance,and photosynthetic characteristics.Therefore,we conducted a two-factor field optimization experiment for the sowing density(D1:1.95×10^(5)plants ha^(-1),D52:2.40×10plants ha^(-1),D3:2.85×10^(5)plants ha^(-1),and D4:3.30×10^(5)plants ha^(-1))and Pbzapplication concentration(P0:0 mg L^(-1)and P1:100 mg L^(-1)).The objective was to optimize agricultural production practices and provide a theoretical basis for highyielding peanut cultivation by evaluating the effects of sowing density and Pbzapplication on plant architecture,lodging resistance,photosynthetic characteristics,and yield.The results showed that at the same Pbzapplication concentration,increasing sowing density increased lodging percentage and reduced leaf photosynthetic capacity.At the same sowing density,Pbzapplication reduced lodging percentage by decreasing plant height(PH),improving lignin biosynthesis-related enzyme activities,and enhancing stem puncture strength(SPS)and breaking strength(SBS).The paclobutrazol-induced alterations in plant architecture and lodging resistance improved light transmission at the middle and bottom leaf strata,resulting in the increase in relative chlorophyll content and net photosynthetic rate(Pn)of leaves.Furthermore,D3P1treatment had the highest peanut yield among all treatments.In summary,the production strategy combining the sowing density of 2.85×10^(5)plants ha^(-1)with the application of100 mg L^(-1)Pbzwas found to be the optimal agricultural production practice for giving full play to production potential and achieving higher peanut yield.展开更多
This study aimed to analyze the absorption, utilization and transfer char- acteristics of nitrogen in high-yield winter wheat (Triticum aestivum) cultivars at dif- ferent sowing dates, so as to determine the optimum...This study aimed to analyze the absorption, utilization and transfer char- acteristics of nitrogen in high-yield winter wheat (Triticum aestivum) cultivars at dif- ferent sowing dates, so as to determine the optimum sowing dates for different high-yield wheat cultivars. A field experiment was conducted in the Shajiang black soil of Anhui Province with Jimai 22, Wanrnai 52 and Zhoumai 22, and the effects of early sowing (October 3), optimum sowing (October 12) and late sowing (October 30) on wheat plant N content and accumulation, pre-and post-anthesis N accumula- tion (NA) of total plant, nitrogen remobUization to grain (NR), N remobilization effi- ciency (NRE), contribution of N remobilized to grain (NRC), grain yield, N use effi- ciency (NUE) and N harvest index (NHI) of different wheat cultivar were investigat- ed. The results showed that sowing date had an impact on N content, absorption and utilization in wheat plants at various growth stages. The NA, NR and NRC of aboveground vegetative organs of wheat before anthesis were higher than those af- ter anthesis. Under the condition of late sowing, the grain N accumulation mainly depended on the N absorption by vegetative organs before anthesis. Under the conditions of optimum and early sowing, the absorbed N after anthesis accounted for a large proportion in grain N accumulation. The N uptake intensity and relative cumulative rate differed greatly among different growth stages and different-genotype wheat cultivars, and the pre-anthesis NA, pre-anthesis NR, pre-anthesis NRE, post- anthesis N assimilation amount and post-anthesis NRC showed significant differ- ences among different wheat cultivars. The grain yields of different wheat cultivars under the early and optimum sowing were all higher than those under the late sowing. The NHI and grain N accumulation were highest under the optimum sow- ing, and the latter significantly decreased with the delay of sowing dates. In con- trast, the NUE was highest under the late sowing, reaching 35.95%-41.32%. It indi- cated that under the condition of late sowing, most of the nitrogen was not ab- sorbed by wheat, but the use efficiency of the absorbed nitrogen significantly in- creased. In overall, the three high-yield wheat cultivars were all suitable for early and optimum sowing. Under the condition of late sowing, the yield of Zhoumai 22 showed the smallest differences with those under early and optimum sowing, and its NUE was significantly improved. Therefore, among the three high-yield wheat culti- vars, Zhoumai 22 was most suitable for late sowing.展开更多
[Objective] This study aimed to investigate the effects of different sowing dates and sites on starch RVA profile characteristics of different ecotypes of japonica rice. [Method] Five different ecotypes of japonica ri...[Objective] This study aimed to investigate the effects of different sowing dates and sites on starch RVA profile characteristics of different ecotypes of japonica rice. [Method] Five different ecotypes of japonica rice were sown at seven different dates in four rice planting regions in Jiangsu Province to analyze the differences in starch RVA profile parameters among different rice varieties. [Result] Among eight parameters of rice starch RVA profile, peak time exhibited no significant differences among different sites, while other seven parameters varied significantly or extremely significantly among different sites, sowing dates and varieties. Specifically, rice variety exerted the most significant effects on rice starch RVA profile parameters. Starch RVA profile characteristics varied significantly among different ecological conditions but exhibited no significant differences among different latitudes. To be specific, in different sites, peak viscosity (PKV), hot paste viscosity (HPV) and breakdown viscosity (BDV) demonstrated a descending order of Huai'an 〉 Suzhou 〉 Lianyungang 〉 Yangzhou. Cool paste viscosity (CPV) and consistence viscosity (CSV) were higher in the north than in the south; specifically, CPV and CSV were significantly higher in Lianyungang and Huai'an than in Yangzhou and Suzhou. Setback viscosity (SBV) showed an increasing trend with increasing latitude; specifically, SBV was significantly lower in Suzhou than in other three sites. Pasting temperature (PAT) and peak time (PET) changed slightly among different latitudes. With the postponing of sowing date, peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV) and peak time (PET) showed a decreasing trend, setback viscosity (SBV) and consistence viscosity (CSV) increased, breakdown viscosity (BDV) increased first and then decreased, whereas pasting temperature (PAT) decreased first and then increased. Furthermore, rice starch RVA profile parameters showed the same variation trend with sowing date in different sites; early sowing within suitable sowing dates could effectively improve the parameters of rice starch RVA profile. However, different parameters exerted different variations among different sites and most parameters were higher in the north than in the south, which indicated that starch RVA profile parameters were significantly affected by sowing date in the north of Jiangsu Province. Among eight starch RVA profile parameters, setback viscosity exhibited the maximum variation coefficient, while peak time exhibited the minimum variation coefficient. Among five rice varieties, Nanjing 46 exhibited the highest peak viscosity and breakdown viscosity and the lowest setback viscosity and consistence viscosity, suggesting that Nanjing 46 had the most appropriate starch RVA profile characteristics and the best cooking and eating quality. Lianjing 4 exhibited relatively high peak viscosity and breakdown viscosity, and relatively low setback viscosity and consistence viscosity, suggesting that Lianjing 4 had good starch RVA profile characteristics. Different sowing dates and sites exerted significant effects on starch RVA profiles of different eco- types of japonica rice. Rice starch RVA profile characteristics varied significantly among different sites but exhibited no significant variations among different latitudes. In addition, starch RVA profile characteristics varied significantly among different sowing dates. Therefore, early sowing of the same variety was conducive to improving starch RVA profile characteristics in appropriate planting regions. [Conclusion] This study provided a theoretical basis for producing high-quality rice and improving the eating quality of rice in Jiangsu Province.展开更多
Nurturing sturdy mechanical-transplanting seedlings is the key to achieve high yield using mechanical-transplanting technology under wheat-rice cropping conditions in Chengdu Basin. In this study, super hybrid rice II...Nurturing sturdy mechanical-transplanting seedlings is the key to achieve high yield using mechanical-transplanting technology under wheat-rice cropping conditions in Chengdu Basin. In this study, super hybrid rice II You 602 was adopted as experimental material, to investigate the effects of sowing date on seedling growth,transplanting quality, growth process and yield of mechanical-transplanting seedlings in wheat-rice cropping region of Chengdu Basin, thus exploring supporting high-yield cultivation techniques for mechanical-transplanting technology in Chengdu Basin, Results showed that the appropriate sowing date for mechanical transplanting in wheatrice cropping region of Chengdu Basin was April 10-15, and the appropriate seedling age was 45-50 d, which led to the highest yield of mechanical-transplanting seedlings. Although postponing sowing was conducive to improving transplanting quality and increasing the percentage of earbearing tillers, it would result in lagged group growth, poor spike quality and reduced effective number of panicles, grain number, seed-setting rate, 1 000-seed weight and other yield components, thus declining the yield. Yield reduction rate would be above 10% with sowing date postponed by 15 d.展开更多
[Objective] The paper was to explore the effect of different sowing dates and densities on individual morphological development of super short-season insect-resistant cotton,confirm their effects on vegetative and rep...[Objective] The paper was to explore the effect of different sowing dates and densities on individual morphological development of super short-season insect-resistant cotton,confirm their effects on vegetative and reproductive growth of cotton,so as to provide theoretical and practical guidance for sowing date and density management of cotton planting in Jidong cotton growing region in Yellow River Basin.[Method] With super short-season insect-resistant cotton"546"as materials,the effects of different sowing dates(sowing dateⅠ:May 20;sowing dateⅡ:June 2;sowing date Ⅲ:June 14)and densities(low density:120 000 plants/hm2;middle density:150 000 plants/hm2;high density:180 000 plants/hm2)on individual morphological development of super short-season insect-resistant cotton were explored.[Result] Different sowing dates and density treatments significantly affected the individual morphological development of super short-season insect-resistant cotton"546".The effectiveness of sowing date was higher than the effectiveness of density,and the effectiveness of sowing date on development of number of individual fruit branches was higher than that on plant height and stem diameter.[Conclusion] The regulation of sowing date and density during the cultivation process of super short-season insect-resistant cotton "546" in Jidong cotton growing region in Yellow River Basin could effectively promote vegetative and reproductive growth of cotton,strengthening its production base.展开更多
Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl do...Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl donor(MET)supplementation alleviates IUGR and enhances offspring’s growth performance by improving intestinal growth,function,and DNA methylation of the ileum in a porcine IUGR model.Methods Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery.After farrowing,8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum.Results The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets.Moreover,maternal MET supplementation significantly reduced the plasma concentrations of isoleucine,cysteine,urea,and total amino acids in sows and newborn pig-lets.It also increased lactase and sucrase activity in the jejunum of newborn piglets.MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets.DNA methylation analysis of the ileum showed that MET supplementation increased the methyla-tion level of DNA CpG sites in the ileum of newborn piglets.Down-regulated differentially methylated genes were enriched in folic acid binding,insulin receptor signaling pathway,and endothelial cell proliferation.In contrast,up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosyn-thetic process.Conclusions Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets,which may be associated with better intestinal function and methylation status.展开更多
[Objective] The aim was to explore the optimal density and nitrogen rate of no-tilling and direct sowing rapeseeds in Chengdu plain. [Methods] Effects of in- teraction between density and nitrogen rate on the growth a...[Objective] The aim was to explore the optimal density and nitrogen rate of no-tilling and direct sowing rapeseeds in Chengdu plain. [Methods] Effects of in- teraction between density and nitrogen rate on the growth and yield of direct sowing rapeseed under no-tillage condition were investigated with Chuanyou 58 as materials and a split-plot experiment adopted. [Results] In Chengdu Plain, the yields of rape- seed changed from increasing to decreasing with increase of density and nitrogen rate. Both of density and nitrogen rate had significant effects on growth and yield of rapeseed and the latter overweighed in the effect. In addition, interaction of the two had negative effects on rapeseed yield. The yield of rapeseeds achieved the highest at 3 395.25 kg/hm^2 with interaction of density at 30.00×10^4 plant/hm^2 and nitrogen rate at 180.00 kg/hm^2; the theoretical maximal yield was 3 403.41 kg/hm^2 with interaction of density at 40.80×10^4 plants/hm^2 and nitrogen rate at 198.90 kg/hm^2. [Conclusion] In Chengdu Plain, the optimal density and nitrogen rate are 30.00×10^4-45.00×10^4 plant/hm^2 and 180.00-198.90 kg/hm^2, respectively.展开更多
In order to investigate the most suitable sowing period and the optimum planting density of new com variety ‘Yudan 30' In Chongqing region, using split plot experiment design, the effect of sowing date and planting ...In order to investigate the most suitable sowing period and the optimum planting density of new com variety ‘Yudan 30' In Chongqing region, using split plot experiment design, the effect of sowing date and planting density on main a- gronomic characters and yield of maize in the field was studied. The results showed that in Chongqing, the delay of sowing date could shorten the fertility peri- od, and reduce 100-grain Weight and yield, but could increase plant height and ear height, panicle traits did not change significantly. With the density increasing, plant height and ear height also increased, while ear length, ear diameter, stem diameter, row number and kernel number also decreased. 100-grain weight and yield also in- creased with the increase of density, but to a certain threshold, yield and 100-grain weight decreased with the increase of density. The yield of 3 sowing periods pre- sented as AI〉A2〉A3, the yield of 4 kinds of density presented as B3〉EH〉B2〉B1, and the yield under sowing time and density interaction presented as AIB3〉A1B4〉 A2.B3〉A2.B4〉A3B3〉 A3B4〉A2.B2〉A1BI〉A2BI〉A3BI. So proper eady sowing and increase of planting density could raise the yield of maize per unit area, and AIB3 was the optimum planting configuration in Chongqing area.展开更多
[Objective] The aim was to research effects of irrigation quantity and term on winter wheat by wide precision sowing and to provide references and technical supports for water-saving agriculture in North China. [Methe...[Objective] The aim was to research effects of irrigation quantity and term on winter wheat by wide precision sowing and to provide references and technical supports for water-saving agriculture in North China. [Methed] During 2013-2015, Jimai 22, a winter wheat cultivar, was taken as materials to explore effects of irrigation quantity and term on water consumption characters and yield of winter wheat by wide precision sowing. [Result] As irrigation water increased, water consumption and irrigation water's proportions were growing, but quantity and proportion of soil water consumption were both diminishing; seed yields all kept increasing upon irrigation, but water use efficiencies were decreasing. Given the same irrigation conditions, water consumption by wide precision sowing was more, but yield and water use efficiency were higher. [Conclusion] The practice of combining wide precision sowing and irrigation in jointing and flowering stages, based on yield, water use efficiency and economic profits, has the potential to create more yields and higher water use efficiency and suitable to be applied and promtoed in North China.展开更多
The research explored adaptability maize seed coating agent in spring sowing and effects of ultra-fine powder shaped areas in northeast China. The results showed that germination potential and rate both improved aroun...The research explored adaptability maize seed coating agent in spring sowing and effects of ultra-fine powder shaped areas in northeast China. The results showed that germination potential and rate both improved around 5% and the num- ber of root increased by 4% in the treatments with ultra-fine powder shaped maize seed coating agent compared with the control group without seed coating. What's more, the treatments with ultra-fine powder shaped maize seed coating agent took advantages in terms of fresh weight of seeding, stem diameter, and dry weight. It is notable that control effects on underground insects performed the best, with per- centage over 94%, which is more excellent relative to other agents in markets. Therefore, ultra-fine powder shaped maize seed coating agent can be widely applied in spring sowing areas in northeast China, without side effects.展开更多
[Objective] This study was performed to determine the effects of sowing dates and sites on grain quality and Rapid Viscosity Analyzer (RVA) profile of Nan-jing 46. [Method] The field experiments were carried out at ...[Objective] This study was performed to determine the effects of sowing dates and sites on grain quality and Rapid Viscosity Analyzer (RVA) profile of Nan-jing 46. [Method] The field experiments were carried out at five sites in Jiangsu Province, and in every site, the seeds were sowing on seven different dates. RVA related indices were measured after harvest. [Result] Along with the delay of sowing date, the mil ing quality of Nanjing 46 increased at first and then reduced, while its appearance quality went up and the cooling and edible quality decreased. With the sowing sites moving southward, the rice mil ing quality, appearance quality, and cooling and edible quality of Nanjing 46 decreased at first and then increased. Grain traits responded variably to the sowing dates and sites. The brown rice rate, grain width, grain length, length/width, mil ed rice rate and head mil ed rice rate were less affected, while the chalky rice rate and chalkiness degree were more af-fected. The gelatinization temperature, protein content, amylose content, gel consis-tency and eating value were in-between. The RVA profile analysis revealed that the breakdown value, setback value and pasting temperature were affected by the sow-ing date and geographical environment. The peak viscosity, hot viscosity, cool vis-cosity and peak time were influenced more by geographical environment. With the delay of the sowing date, peak viscosity, hot viscosity, cool viscosity, setback value and pasting temperature decreased at first and then increased, while the breakdown value changed inversely, and the peak time did not exhibit a regular trend. With the decrease of latitude, the peak viscosity, hot viscosity, breakdown and cool viscosity declined at first and then increased, the setback value and peak time decreased, while the pasting temperature increased. [Conclusion] This study wil provide refer-ences for the effective production of Nanjing 46.展开更多
Ear differentiation,grain development and their interaction with factors in the growing environment,such as temperature,solar radiation and precipitation,greatly influence grain number and grain weight,and ultimately ...Ear differentiation,grain development and their interaction with factors in the growing environment,such as temperature,solar radiation and precipitation,greatly influence grain number and grain weight,and ultimately affect summer maize production.In this study,field experiments involving different sowing dates were conducted over three years to evaluate the effects of temperature factors,average solar radiation and total precipitation on the growth process,ear differentiation,fertilization characteristics,grain filling and yield of summer maize varieties with different growth durations.Four hybrids were evaluated in Huang-Huai-Hai Plain(HHHP),China from 2018 to 2020 with five different sowing dates.The results showed that the grain yield formation of summer maize was strongly impacted by the environment from the silking(R1)to milking(R3)stage.Average minimum temperature(AT_(min))was the key environmental factor that determined yield.Reductions in the length of the growing season(r=–0.556,P<0.01)and the total floret number on ear(R^(2)=0.200,P<0.001)were found when AT_(min) was elevated from the emerging(VE)to R1 stage.Both grain-filling rate(R^(2)=0.520,P<0.001)and the floret abortion rate on ear(R^(2)=0.437,P<0.001)showed quadratic relationships with AT_(min) from the R1 to physiological maturity(R6)stage,while the number of days after the R1 stage(r=–0.756,P<0.01)was negatively correlated with AT_(min).An increase in AT_(min) was beneficial for the promotion of yield when it did not exceeded a certain level(above 23°C during the R1–R3 stage and 20–21°C during the R1-R6 stage).Enhanced solar radiation and precipitation during R1–R6 increased the grain-filling rate(R^(2)=0.562,P<0.001 and R^(2)=0.229,P<0.05,respectively).Compared with short-season hybrids,full-season hybrids showed much greater suitability for a critical environment.The coordinated regulation of AT_(min),ear differentiation and grain development at the pre-and post-silking stages improved maize yield by increasing total floret number and grain-filling rate,and by reducing the floret abortion rate on ear.展开更多
Background Maternal nutrition is essential in keeping a highly efficient production system in the pig industry.Laminarin has been shown to improve antioxidant capacity,reduce the inflammatory response,and favor the ho...Background Maternal nutrition is essential in keeping a highly efficient production system in the pig industry.Laminarin has been shown to improve antioxidant capacity,reduce the inflammatory response,and favor the homeostasis of intestinal microbiota.However,the effect of dietary supplementation of laminarin on the reproductive performance of sows and the growth of suckling offspring remains unknown.Methods A total of 40 Landrace×Yorkshire multiparous sows on d 85 of gestation,similar in age,body weight(BW),parity and reproductive performance,were randomly divided into four dietary treatments with 10 sows per treatment,receiving a control diet(basal pregnancy or lactating diets)and a basal diet supplemented with 0.025%,0.05%and 0.10%laminarin,respectively.The experiment lasted from d 85 of gestation to d 21 of lactation.Results Laminarin supplementation linearly increased number born alive per litter(P=0.03),average daily feed intake(ADFI,P<0.01),and total milk yield of sows during the lactation of 1–21 d(P=0.02).Furthermore,maternal laminarin supplementation increased the average daily gain(ADG)of piglets while tending to reduce the culling and death rate before weaning.In addition,alterations to the composition of colostrum and milk,as well as to serum inflammatory cytokines and immunoglobulins of sows were observed.The fecal microbiota profile of sows supported the improvement of reproductive performance in sows and the growth performance in suckling offspring.Conclusions Dietary supplementation of laminarin during late pregnancy and lactation could significantly improve reproductive performance of sows and growth performance of piglets.展开更多
Background Sex hormones play important roles in the estrus return of post-weaning sows.Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota.However,the ext...Background Sex hormones play important roles in the estrus return of post-weaning sows.Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota.However,the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown.Results In this study,we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing and identified significant associations between microbes and estrus return of post-weaning sows.Using metagenomic sequencing data from 85 fecal samples,we identified 37 bacterial species that were significantly associated with estrus return.Normally returning sows were characterized by increased abundances of L.reuteri and P.copri and decreased abundances of B.fragilis,S.suis,and B.pseudolongum.The changes in gut microbial composition significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome.The results were confirmed in a validation cohort.Significant changes in sex steroid hormones and related compounds were found between normal and non-return sows via metabolome analysis.An integrated analysis of differential bacterial species,metagenome,and fecal metabolome provided evidence that normal return-associated bacterial species L.reuteri and Prevotella spp.participated in the degradation of pregnenolone,progesterone,and testosterone,thereby promoting estrogen biosynthesis.Furthermore,the microbial metabolites related to sow energy and nutrient supply or metabolic disorders also showed relationships with sow estrus return.Conclusions An integrated analysis of differentially abundant bacterial species,metagenome,and fecal metabolome revealed the involvement of L.reuteri and Prevotella spp.in sow estrus return.These findings provide deep insight into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut microbiota and sex hormones,suggesting that the manipulation of the gut microbiota could be an effective strategy to improve sow estrus return after weaning.展开更多
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all...A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.展开更多
基金supported by the National Key Research and Development Program of China (2016YFD0300403)the National Natural Science Foundation of China(31801298)the Fund of Shandong‘Double Top’Program,China (SYL2017YSTD05)。
文摘Delayed sowing mitigates lodging in wheat. However, the mechanism underlying the enhanced lodging resistance in wheat has yet to be fully elucidated. Field experiments were conducted to investigate the effects of sowing date on lignin and cellulose metabolism, stem morphological characteristics, lodging resistance, and grain yield. Seeds of Tainong 18,a winter wheat variety, were sown on October 8(normal sowing) and October 22(late sowing) during both of the 2015–2016 and 2016–2017 growing seasons. The results showed that late sowing enhanced the lodging resistance of wheat by improving the biosynthesis and accumulation of lignin and cellulose. Under late sowing, the expression levels of key genes(Ta PAL, Ta CCR, Ta COMT, TaCAD, and TaCesA1, 3, 4, 7, and 8) and enzyme activities(TaPAL and TaCAD) related to lignin and cellulose biosynthesis peaked 4–12 days earlier, and except for the TaPAL, TaCCR, and TaCesA1 genes and TaPAL, in most cases they were significantly higher than under normal sowing. As a result, lignin and cellulose accumulated quickly during the stem elongation stage. The mean and maximum accumulation rates of lignin and cellulose increased, the maximum accumulation contents of lignin and cellulose were higher, and the cellulose accumulation duration was prolonged. Consequently, the lignin/cellulose ratio and lignin content were increased from 0 day and the cellulose content was increased from 11 days after jointing onward. Our main finding is that the improved biosynthesis and accumulation of lignin and cellulose were responsible for increasing the stem-filling degree, breaking strength, and lodging resistance. The major functional genes enhancing lodging resistance in wheat that are induced by delayed sowing need to be determined.
基金the Jiangsu Demonstration Project of Modern Agricultural Machinery Equipment and Technology, China (NJ2020-58, NJ2019-33, NJ2021-63)。
文摘Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance.This study aims to reveal the effects of sowing date and ecological points on the climate resources associated with wheat yield in the Rice–Wheat Rotation System.With six sowing dates,the experiments were carried out in Donghai and Jianhu counties,Jiangsu Province,China using two semi-winter wheat varieties as the objects of this study.The basic seedlings of the first sowing date (S1) were planted at 300×10^(4)plants ha^(-1),which was increased by 10%for each of the delayed sowing dates (S2–S6).The results showed that the delay of sowing date decreased the number of days,the effective accumulated temperature and the cumulative solar radiation in the whole growth period.The yields of S1 were higher than those of S2 to S6 by 0.22–0.31,0.5–0.78,0.86–0.98,1.14–1.38,and 1.36–1.59 t ha^(–1),respectively.For a given sowing date,the growth days increased as the ecological point was moved north,while both mean daily temperature and effective accumulative temperature decreased,but the cumulative radiation increased.As a result,the yields at Donghai County were 0.01–0.39 t ha–1lower than those of Jianhu County for the six sowing dates.The effective accumulative temperature and cumulative radiation both had significant positive correlations with yield.The average temperature was significantly negatively correlated with the yield.The decrease in grain yield was mainly due to the declines in grains per spike and 1 000-grain weight caused by the increase in the daily temperature and the decrease in the effective accumulative temperature.
基金Financial support was received from the National Key Research and Development Program of China(2016YFD0300403 and 2017YFD0201705)。
文摘Delays in sowing have significant effects on the grain yield,yield components,and grain protein concentrations of winter wheat.However,little is known about how delayed sowing affects these characteristics at different positions in the wheat spikes.In this study,the effects of sowing date were investigated in a winter wheat cultivar,Shannong 30,which was sown in 2019 and 2020 on October 8(normal sowing)and October 22(late sowing)under field conditions.Delayed sowing increased the partitioning of ^(13)C-assimilates to spikes,particularly to florets at the apical section of a spike and those occupying distal positions on the same spikelet.Consequently,the increase in grain number was the greatest for the apical sections,followed by the basal and central sections.No significant differences were observed between sowing dates in the superior grain number in the basal and central sections,while the number in apical sections was significantly different.The number of inferior grains in each section also increased substantially in response to delayed sowing.The average grain weights in all sections remained unchanged under delayed sowing because there were parallel increases in grain number and ^(13)C-assimilate partitioning to grains at specific positions in the spikes.Increases in grain number m^(–2) resulted in reduced grain protein concentrations as the limited nitrogen supply was diluted into more grains.Delayed sowing caused the greatest reduction in grain protein concentration in the basal sections,followed by the central and apical sections.No significant differences in the reduction of the grain protein concentration were observed between the inferior and superior grains under delayed sowing.In conclusion,a 2-week delay in sowing improved grain yield through increased grain number per spike,which originated principally from an increased grain number in the apical sections of spikes and in distal positions on the same spikelet.However,grain protein concentrations declined in each section because of the increased grain number and reduced N uptake.
基金Supported by Science and Technology Support Project of Xinjiang Uygur Autonomous Region(2016E02007)Western Young Scholars Project of Chinese Academy of Sciences(2018-XBQNXZ-A-002)
文摘[Objectives]This study aimed to investigate the effect of sowing rate,fertilizer amount and light on yield of Cichorium glandulosum Boiss.et Huet.[Methods]The Latin square design was adopted to investigate the effect of sowing rate+fertilizer amount,sowing rate+light on root and seed yield of C.glandulosum Boiss.et Huet.The changes in the seed and root yield of C.glandulosum Boiss.et Huet.under the influence of sowing rate,N application rate and light were compared and analyzed.[Results]In Moyu,Hotan and similar areas,the suitable sowing rate of C.glandulosum Boiss.et Huet.was 4.5-15.0 kg/ha.Without applying fertilizer,if the main purpose is to harvest the roots,the sowing rate of C.glandulosum Boiss.et Huet.is recommended to be 7.5-15.0 kg/ha;and if the main purpose is to harvest the seeds,the sowing rate is recommended to be 4.5-7.5 kg/ha.Shading will affect the root and seed yield.At the fertilizer amount of 450 kg/ha,the optimal sowing rate of C.glandulosum Boiss.et Huet.is 4.5 kg/ha.[Conclusions]This study provides a certain reference basis for artificial cultivation of C.glandulosum Boiss.et Huet.
基金National Key Research and Development Plan(2021YFD1900805)Funded Project of Basic Scientific Research Business of Public Welfare Research Institutes in Autonomous Region(KY2022127)。
文摘To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequencies(high frequency and low frequency)and one double film cover winter irrigation control treatment(CK:2250 m^(3)/hm^(2))were set up to analyze the spatial distribution patterns of soil water and salt environment and root density in dry sown and wet emerged cotton fields under diffe-rent moisture control conditions.The results show that the soil water content and water infiltration range gradually become larger with the increase of seedling water quantity,and the larger the seedling water quantity,the higher the soil water content.With the same seedling water quantity,the soil water content of the high-frequency(HF)treatment becomes obviously larger.The soil conductivity of each treatment tends to decrease gradually with the increase of seedling water and drip frequency,among which the distribution of soil conductivity of S6 treatment is closest to that of CK.With the increase in soil depth,the soil conductivity tends to increase first and then decrease.Compared with the low-frequency(LF)treatment,the high-frequency treatment shows a significantly deeper soil salt accumulation layer.The root length density(RLD)of cotton gradually increases with the amount of seedling water and the frequency of dripping.The soil layer of root distribution gradually deepens with the amount of seedling water in the vertical direction,and the RLD value in the horizontal direction is significantly greater in the mulched area than that in the bare area between films.This research can serve as a solid scientific foundation for the use of dry sowing and wet emergence techniques in cotton fields in southern Xinjiang.
基金supported by the National Key Research and Development Program of China(2020YFD1000902)the Shandong Key Research and Development Program(2018YFJH0601-3)+1 种基金the Major Agricultural Applied Technological Innovation Projects in Shandong Province(SD2019ZZ11)the Shandong Modern Agricultural Technology and Industry System(SDAIT-04-01)。
文摘The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective practices that increase peanut yield by improving plant architecture,lodging resistance,and photosynthetic characteristics.Therefore,we conducted a two-factor field optimization experiment for the sowing density(D1:1.95×10^(5)plants ha^(-1),D52:2.40×10plants ha^(-1),D3:2.85×10^(5)plants ha^(-1),and D4:3.30×10^(5)plants ha^(-1))and Pbzapplication concentration(P0:0 mg L^(-1)and P1:100 mg L^(-1)).The objective was to optimize agricultural production practices and provide a theoretical basis for highyielding peanut cultivation by evaluating the effects of sowing density and Pbzapplication on plant architecture,lodging resistance,photosynthetic characteristics,and yield.The results showed that at the same Pbzapplication concentration,increasing sowing density increased lodging percentage and reduced leaf photosynthetic capacity.At the same sowing density,Pbzapplication reduced lodging percentage by decreasing plant height(PH),improving lignin biosynthesis-related enzyme activities,and enhancing stem puncture strength(SPS)and breaking strength(SBS).The paclobutrazol-induced alterations in plant architecture and lodging resistance improved light transmission at the middle and bottom leaf strata,resulting in the increase in relative chlorophyll content and net photosynthetic rate(Pn)of leaves.Furthermore,D3P1treatment had the highest peanut yield among all treatments.In summary,the production strategy combining the sowing density of 2.85×10^(5)plants ha^(-1)with the application of100 mg L^(-1)Pbzwas found to be the optimal agricultural production practice for giving full play to production potential and achieving higher peanut yield.
基金Supported by National Key Technology Research and Development Program(2012BAD04B09,2013BAD07B08)
文摘This study aimed to analyze the absorption, utilization and transfer char- acteristics of nitrogen in high-yield winter wheat (Triticum aestivum) cultivars at dif- ferent sowing dates, so as to determine the optimum sowing dates for different high-yield wheat cultivars. A field experiment was conducted in the Shajiang black soil of Anhui Province with Jimai 22, Wanrnai 52 and Zhoumai 22, and the effects of early sowing (October 3), optimum sowing (October 12) and late sowing (October 30) on wheat plant N content and accumulation, pre-and post-anthesis N accumula- tion (NA) of total plant, nitrogen remobUization to grain (NR), N remobilization effi- ciency (NRE), contribution of N remobilized to grain (NRC), grain yield, N use effi- ciency (NUE) and N harvest index (NHI) of different wheat cultivar were investigat- ed. The results showed that sowing date had an impact on N content, absorption and utilization in wheat plants at various growth stages. The NA, NR and NRC of aboveground vegetative organs of wheat before anthesis were higher than those af- ter anthesis. Under the condition of late sowing, the grain N accumulation mainly depended on the N absorption by vegetative organs before anthesis. Under the conditions of optimum and early sowing, the absorbed N after anthesis accounted for a large proportion in grain N accumulation. The N uptake intensity and relative cumulative rate differed greatly among different growth stages and different-genotype wheat cultivars, and the pre-anthesis NA, pre-anthesis NR, pre-anthesis NRE, post- anthesis N assimilation amount and post-anthesis NRC showed significant differ- ences among different wheat cultivars. The grain yields of different wheat cultivars under the early and optimum sowing were all higher than those under the late sowing. The NHI and grain N accumulation were highest under the optimum sow- ing, and the latter significantly decreased with the delay of sowing dates. In con- trast, the NUE was highest under the late sowing, reaching 35.95%-41.32%. It indi- cated that under the condition of late sowing, most of the nitrogen was not ab- sorbed by wheat, but the use efficiency of the absorbed nitrogen significantly in- creased. In overall, the three high-yield wheat cultivars were all suitable for early and optimum sowing. Under the condition of late sowing, the yield of Zhoumai 22 showed the smallest differences with those under early and optimum sowing, and its NUE was significantly improved. Therefore, among the three high-yield wheat culti- vars, Zhoumai 22 was most suitable for late sowing.
文摘[Objective] This study aimed to investigate the effects of different sowing dates and sites on starch RVA profile characteristics of different ecotypes of japonica rice. [Method] Five different ecotypes of japonica rice were sown at seven different dates in four rice planting regions in Jiangsu Province to analyze the differences in starch RVA profile parameters among different rice varieties. [Result] Among eight parameters of rice starch RVA profile, peak time exhibited no significant differences among different sites, while other seven parameters varied significantly or extremely significantly among different sites, sowing dates and varieties. Specifically, rice variety exerted the most significant effects on rice starch RVA profile parameters. Starch RVA profile characteristics varied significantly among different ecological conditions but exhibited no significant differences among different latitudes. To be specific, in different sites, peak viscosity (PKV), hot paste viscosity (HPV) and breakdown viscosity (BDV) demonstrated a descending order of Huai'an 〉 Suzhou 〉 Lianyungang 〉 Yangzhou. Cool paste viscosity (CPV) and consistence viscosity (CSV) were higher in the north than in the south; specifically, CPV and CSV were significantly higher in Lianyungang and Huai'an than in Yangzhou and Suzhou. Setback viscosity (SBV) showed an increasing trend with increasing latitude; specifically, SBV was significantly lower in Suzhou than in other three sites. Pasting temperature (PAT) and peak time (PET) changed slightly among different latitudes. With the postponing of sowing date, peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV) and peak time (PET) showed a decreasing trend, setback viscosity (SBV) and consistence viscosity (CSV) increased, breakdown viscosity (BDV) increased first and then decreased, whereas pasting temperature (PAT) decreased first and then increased. Furthermore, rice starch RVA profile parameters showed the same variation trend with sowing date in different sites; early sowing within suitable sowing dates could effectively improve the parameters of rice starch RVA profile. However, different parameters exerted different variations among different sites and most parameters were higher in the north than in the south, which indicated that starch RVA profile parameters were significantly affected by sowing date in the north of Jiangsu Province. Among eight starch RVA profile parameters, setback viscosity exhibited the maximum variation coefficient, while peak time exhibited the minimum variation coefficient. Among five rice varieties, Nanjing 46 exhibited the highest peak viscosity and breakdown viscosity and the lowest setback viscosity and consistence viscosity, suggesting that Nanjing 46 had the most appropriate starch RVA profile characteristics and the best cooking and eating quality. Lianjing 4 exhibited relatively high peak viscosity and breakdown viscosity, and relatively low setback viscosity and consistence viscosity, suggesting that Lianjing 4 had good starch RVA profile characteristics. Different sowing dates and sites exerted significant effects on starch RVA profiles of different eco- types of japonica rice. Rice starch RVA profile characteristics varied significantly among different sites but exhibited no significant variations among different latitudes. In addition, starch RVA profile characteristics varied significantly among different sowing dates. Therefore, early sowing of the same variety was conducive to improving starch RVA profile characteristics in appropriate planting regions. [Conclusion] This study provided a theoretical basis for producing high-quality rice and improving the eating quality of rice in Jiangsu Province.
基金Supported by "Twelfth Five-Year"National Science and Technology Support Program(2012BAD04B13)"Twelfth Five-Year"National Science and Technology Support Program(2011BAD16B05)+3 种基金Special Fund for National Public Service Sectors(Agriculture)from the Ministry of Agriculture of China(200903050-4)Special Fund for National Public Service Sectors(Agriculture)of China(201303129)Major Special Project from the Ministry of Agriculture of ChinaScience and Technology SupportProgram of Sichuan Province(2010NZ0093)~~
文摘Nurturing sturdy mechanical-transplanting seedlings is the key to achieve high yield using mechanical-transplanting technology under wheat-rice cropping conditions in Chengdu Basin. In this study, super hybrid rice II You 602 was adopted as experimental material, to investigate the effects of sowing date on seedling growth,transplanting quality, growth process and yield of mechanical-transplanting seedlings in wheat-rice cropping region of Chengdu Basin, thus exploring supporting high-yield cultivation techniques for mechanical-transplanting technology in Chengdu Basin, Results showed that the appropriate sowing date for mechanical transplanting in wheatrice cropping region of Chengdu Basin was April 10-15, and the appropriate seedling age was 45-50 d, which led to the highest yield of mechanical-transplanting seedlings. Although postponing sowing was conducive to improving transplanting quality and increasing the percentage of earbearing tillers, it would result in lagged group growth, poor spike quality and reduced effective number of panicles, grain number, seed-setting rate, 1 000-seed weight and other yield components, thus declining the yield. Yield reduction rate would be above 10% with sowing date postponed by 15 d.
基金Supported by Natural Science Foundation of Heibei Province(C2007000444)Hebei Science and Technology Support Program(10220208)~~
文摘[Objective] The paper was to explore the effect of different sowing dates and densities on individual morphological development of super short-season insect-resistant cotton,confirm their effects on vegetative and reproductive growth of cotton,so as to provide theoretical and practical guidance for sowing date and density management of cotton planting in Jidong cotton growing region in Yellow River Basin.[Method] With super short-season insect-resistant cotton"546"as materials,the effects of different sowing dates(sowing dateⅠ:May 20;sowing dateⅡ:June 2;sowing date Ⅲ:June 14)and densities(low density:120 000 plants/hm2;middle density:150 000 plants/hm2;high density:180 000 plants/hm2)on individual morphological development of super short-season insect-resistant cotton were explored.[Result] Different sowing dates and density treatments significantly affected the individual morphological development of super short-season insect-resistant cotton"546".The effectiveness of sowing date was higher than the effectiveness of density,and the effectiveness of sowing date on development of number of individual fruit branches was higher than that on plant height and stem diameter.[Conclusion] The regulation of sowing date and density during the cultivation process of super short-season insect-resistant cotton "546" in Jidong cotton growing region in Yellow River Basin could effectively promote vegetative and reproductive growth of cotton,strengthening its production base.
基金This work was supported by Sichuan Provincial Science Fund for Distinguished Young Scholars(Grant No.2020JDJQ0041)CARS-35 and Sichuan Key Science and Technology Project(NO.2021ZDZX0009).
文摘Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl donor(MET)supplementation alleviates IUGR and enhances offspring’s growth performance by improving intestinal growth,function,and DNA methylation of the ileum in a porcine IUGR model.Methods Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery.After farrowing,8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum.Results The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets.Moreover,maternal MET supplementation significantly reduced the plasma concentrations of isoleucine,cysteine,urea,and total amino acids in sows and newborn pig-lets.It also increased lactase and sucrase activity in the jejunum of newborn piglets.MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets.DNA methylation analysis of the ileum showed that MET supplementation increased the methyla-tion level of DNA CpG sites in the ileum of newborn piglets.Down-regulated differentially methylated genes were enriched in folic acid binding,insulin receptor signaling pathway,and endothelial cell proliferation.In contrast,up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosyn-thetic process.Conclusions Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets,which may be associated with better intestinal function and methylation status.
基金Supported by National Science and Technology Support Program(2010BAD01B08)Sichuan Finance Gene Engineering Program(2011JYGC04-013)12th Five Year Breeding Project of Crops of Sichuan Province~~
文摘[Objective] The aim was to explore the optimal density and nitrogen rate of no-tilling and direct sowing rapeseeds in Chengdu plain. [Methods] Effects of in- teraction between density and nitrogen rate on the growth and yield of direct sowing rapeseed under no-tillage condition were investigated with Chuanyou 58 as materials and a split-plot experiment adopted. [Results] In Chengdu Plain, the yields of rape- seed changed from increasing to decreasing with increase of density and nitrogen rate. Both of density and nitrogen rate had significant effects on growth and yield of rapeseed and the latter overweighed in the effect. In addition, interaction of the two had negative effects on rapeseed yield. The yield of rapeseeds achieved the highest at 3 395.25 kg/hm^2 with interaction of density at 30.00×10^4 plant/hm^2 and nitrogen rate at 180.00 kg/hm^2; the theoretical maximal yield was 3 403.41 kg/hm^2 with interaction of density at 40.80×10^4 plants/hm^2 and nitrogen rate at 198.90 kg/hm^2. [Conclusion] In Chengdu Plain, the optimal density and nitrogen rate are 30.00×10^4-45.00×10^4 plant/hm^2 and 180.00-198.90 kg/hm^2, respectively.
基金Supported by the Fundamental Research Fund of Chongqing Public Welfare Research Institutes"On the Yield and Photosynthetic Performance under Different Plant-Row Spacing"(cstc-2014jbky-00510)National Maize Industry Technology System(CARS-02-74)Key Innovation Project of Main Crop Varieties during"the 12thFive-Year Plan""On High Yield and High Efficiency Cultivation Techniques for Maize and the Integration and Demonstration"(cstc2012ggC80007)~~
文摘In order to investigate the most suitable sowing period and the optimum planting density of new com variety ‘Yudan 30' In Chongqing region, using split plot experiment design, the effect of sowing date and planting density on main a- gronomic characters and yield of maize in the field was studied. The results showed that in Chongqing, the delay of sowing date could shorten the fertility peri- od, and reduce 100-grain Weight and yield, but could increase plant height and ear height, panicle traits did not change significantly. With the density increasing, plant height and ear height also increased, while ear length, ear diameter, stem diameter, row number and kernel number also decreased. 100-grain weight and yield also in- creased with the increase of density, but to a certain threshold, yield and 100-grain weight decreased with the increase of density. The yield of 3 sowing periods pre- sented as AI〉A2〉A3, the yield of 4 kinds of density presented as B3〉EH〉B2〉B1, and the yield under sowing time and density interaction presented as AIB3〉A1B4〉 A2.B3〉A2.B4〉A3B3〉 A3B4〉A2.B2〉A1BI〉A2BI〉A3BI. So proper eady sowing and increase of planting density could raise the yield of maize per unit area, and AIB3 was the optimum planting configuration in Chongqing area.
基金Shandong Province S&T Development Plan(2014GNC113001)Crop Biology National key Laboratory Open Project(2014KF11)~~
文摘[Objective] The aim was to research effects of irrigation quantity and term on winter wheat by wide precision sowing and to provide references and technical supports for water-saving agriculture in North China. [Methed] During 2013-2015, Jimai 22, a winter wheat cultivar, was taken as materials to explore effects of irrigation quantity and term on water consumption characters and yield of winter wheat by wide precision sowing. [Result] As irrigation water increased, water consumption and irrigation water's proportions were growing, but quantity and proportion of soil water consumption were both diminishing; seed yields all kept increasing upon irrigation, but water use efficiencies were decreasing. Given the same irrigation conditions, water consumption by wide precision sowing was more, but yield and water use efficiency were higher. [Conclusion] The practice of combining wide precision sowing and irrigation in jointing and flowering stages, based on yield, water use efficiency and economic profits, has the potential to create more yields and higher water use efficiency and suitable to be applied and promtoed in North China.
基金Supported by Key Projects in the National Science&Technology Pillar Program~~
文摘The research explored adaptability maize seed coating agent in spring sowing and effects of ultra-fine powder shaped areas in northeast China. The results showed that germination potential and rate both improved around 5% and the num- ber of root increased by 4% in the treatments with ultra-fine powder shaped maize seed coating agent compared with the control group without seed coating. What's more, the treatments with ultra-fine powder shaped maize seed coating agent took advantages in terms of fresh weight of seeding, stem diameter, and dry weight. It is notable that control effects on underground insects performed the best, with per- centage over 94%, which is more excellent relative to other agents in markets. Therefore, ultra-fine powder shaped maize seed coating agent can be widely applied in spring sowing areas in northeast China, without side effects.
基金Supported by Earmarked Fund for China Agriculture Research System(CARS-01-47)Super Late-maturing Rice Variety Breeding and Demonstration Program of Ministry of Agriculture~~
文摘[Objective] This study was performed to determine the effects of sowing dates and sites on grain quality and Rapid Viscosity Analyzer (RVA) profile of Nan-jing 46. [Method] The field experiments were carried out at five sites in Jiangsu Province, and in every site, the seeds were sowing on seven different dates. RVA related indices were measured after harvest. [Result] Along with the delay of sowing date, the mil ing quality of Nanjing 46 increased at first and then reduced, while its appearance quality went up and the cooling and edible quality decreased. With the sowing sites moving southward, the rice mil ing quality, appearance quality, and cooling and edible quality of Nanjing 46 decreased at first and then increased. Grain traits responded variably to the sowing dates and sites. The brown rice rate, grain width, grain length, length/width, mil ed rice rate and head mil ed rice rate were less affected, while the chalky rice rate and chalkiness degree were more af-fected. The gelatinization temperature, protein content, amylose content, gel consis-tency and eating value were in-between. The RVA profile analysis revealed that the breakdown value, setback value and pasting temperature were affected by the sow-ing date and geographical environment. The peak viscosity, hot viscosity, cool vis-cosity and peak time were influenced more by geographical environment. With the delay of the sowing date, peak viscosity, hot viscosity, cool viscosity, setback value and pasting temperature decreased at first and then increased, while the breakdown value changed inversely, and the peak time did not exhibit a regular trend. With the decrease of latitude, the peak viscosity, hot viscosity, breakdown and cool viscosity declined at first and then increased, the setback value and peak time decreased, while the pasting temperature increased. [Conclusion] This study wil provide refer-ences for the effective production of Nanjing 46.
基金supported by Key Technology Research and Development Program of Shandong Province,China(2021LZGC014-2)the National Natural Science Foundation of China(32172115)the National Modern Agriculture Industry Technology System,China(CARS02-21)。
文摘Ear differentiation,grain development and their interaction with factors in the growing environment,such as temperature,solar radiation and precipitation,greatly influence grain number and grain weight,and ultimately affect summer maize production.In this study,field experiments involving different sowing dates were conducted over three years to evaluate the effects of temperature factors,average solar radiation and total precipitation on the growth process,ear differentiation,fertilization characteristics,grain filling and yield of summer maize varieties with different growth durations.Four hybrids were evaluated in Huang-Huai-Hai Plain(HHHP),China from 2018 to 2020 with five different sowing dates.The results showed that the grain yield formation of summer maize was strongly impacted by the environment from the silking(R1)to milking(R3)stage.Average minimum temperature(AT_(min))was the key environmental factor that determined yield.Reductions in the length of the growing season(r=–0.556,P<0.01)and the total floret number on ear(R^(2)=0.200,P<0.001)were found when AT_(min) was elevated from the emerging(VE)to R1 stage.Both grain-filling rate(R^(2)=0.520,P<0.001)and the floret abortion rate on ear(R^(2)=0.437,P<0.001)showed quadratic relationships with AT_(min) from the R1 to physiological maturity(R6)stage,while the number of days after the R1 stage(r=–0.756,P<0.01)was negatively correlated with AT_(min).An increase in AT_(min) was beneficial for the promotion of yield when it did not exceeded a certain level(above 23°C during the R1–R3 stage and 20–21°C during the R1-R6 stage).Enhanced solar radiation and precipitation during R1–R6 increased the grain-filling rate(R^(2)=0.562,P<0.001 and R^(2)=0.229,P<0.05,respectively).Compared with short-season hybrids,full-season hybrids showed much greater suitability for a critical environment.The coordinated regulation of AT_(min),ear differentiation and grain development at the pre-and post-silking stages improved maize yield by increasing total floret number and grain-filling rate,and by reducing the floret abortion rate on ear.
基金supported by the National Key Research and Development Program of China,2018YFD0500400。
文摘Background Maternal nutrition is essential in keeping a highly efficient production system in the pig industry.Laminarin has been shown to improve antioxidant capacity,reduce the inflammatory response,and favor the homeostasis of intestinal microbiota.However,the effect of dietary supplementation of laminarin on the reproductive performance of sows and the growth of suckling offspring remains unknown.Methods A total of 40 Landrace×Yorkshire multiparous sows on d 85 of gestation,similar in age,body weight(BW),parity and reproductive performance,were randomly divided into four dietary treatments with 10 sows per treatment,receiving a control diet(basal pregnancy or lactating diets)and a basal diet supplemented with 0.025%,0.05%and 0.10%laminarin,respectively.The experiment lasted from d 85 of gestation to d 21 of lactation.Results Laminarin supplementation linearly increased number born alive per litter(P=0.03),average daily feed intake(ADFI,P<0.01),and total milk yield of sows during the lactation of 1–21 d(P=0.02).Furthermore,maternal laminarin supplementation increased the average daily gain(ADG)of piglets while tending to reduce the culling and death rate before weaning.In addition,alterations to the composition of colostrum and milk,as well as to serum inflammatory cytokines and immunoglobulins of sows were observed.The fecal microbiota profile of sows supported the improvement of reproductive performance in sows and the growth performance in suckling offspring.Conclusions Dietary supplementation of laminarin during late pregnancy and lactation could significantly improve reproductive performance of sows and growth performance of piglets.
基金supported by the National Key R&D Program of China(2022YFA1304204)National Natural Science Foundation of China(31772579).
文摘Background Sex hormones play important roles in the estrus return of post-weaning sows.Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota.However,the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown.Results In this study,we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing and identified significant associations between microbes and estrus return of post-weaning sows.Using metagenomic sequencing data from 85 fecal samples,we identified 37 bacterial species that were significantly associated with estrus return.Normally returning sows were characterized by increased abundances of L.reuteri and P.copri and decreased abundances of B.fragilis,S.suis,and B.pseudolongum.The changes in gut microbial composition significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome.The results were confirmed in a validation cohort.Significant changes in sex steroid hormones and related compounds were found between normal and non-return sows via metabolome analysis.An integrated analysis of differential bacterial species,metagenome,and fecal metabolome provided evidence that normal return-associated bacterial species L.reuteri and Prevotella spp.participated in the degradation of pregnenolone,progesterone,and testosterone,thereby promoting estrogen biosynthesis.Furthermore,the microbial metabolites related to sow energy and nutrient supply or metabolic disorders also showed relationships with sow estrus return.Conclusions An integrated analysis of differentially abundant bacterial species,metagenome,and fecal metabolome revealed the involvement of L.reuteri and Prevotella spp.in sow estrus return.These findings provide deep insight into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut microbiota and sex hormones,suggesting that the manipulation of the gut microbiota could be an effective strategy to improve sow estrus return after weaning.
基金supported by the Institutional Fund Projects(IFPIP-1481-611-1443)the Key Projects of Natural Science Research in Anhui Higher Education Institutions(2022AH051909)+1 种基金the Provincial Quality Project of Colleges and Universities in Anhui Province(2022sdxx020,2022xqhz044)Bengbu University 2021 High-Level Scientific Research and Cultivation Project(2021pyxm04)。
文摘A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.