期刊文献+
共找到83,462篇文章
< 1 2 250 >
每页显示 20 50 100
The structure-directing role of heterologous seeds in the synthesis of zeolite 被引量:2
1
作者 Haoyang Zhang Binyu Wang Wenfu Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期792-801,共10页
Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recen... Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recently applied in energy storage.Seed-assisted synthesis is a very effective approach in promoting the crystallization of zeolites.In some cases,the target zeolite cannot be formed in the absence of seed zeolite.In homologous seed-assisted synthesis,the structure of the seed zeolite is the same to that of the target zeolite,while the structure of the seed zeolite is different to that of the target zeolite in the heterologous seed-assisted synthesis.In this review,we briefly summarized the heterologous seed-assisted syntheses of zeolites and analyzed the structure-directing effect of heterologous seeds and surveyed the“common composite building units(CBUs)hypothesis”and the“common secondary building units(SBUs)hypothesis”.However,both hypotheses cannot explain all observations on the heterologous seed-assisted syntheses.Finally,we proposed that the formation of the target zeolite does need nuclei with the structure of target zeolite and the formation of the nuclei of the target zeolite can be promoted by either the undissolved seed crystals with the same CBUs or SBUs to the target zeolite or by the facilitated appropriate distribution of the specific building units due to the presence of the heterologous seed that does not have any common CBUs and SBUs with the target zeolite. 展开更多
关键词 ZEOLITE Heterologous seed SYNTHESIS Structure-directing effect
下载PDF
Identification and fine mapping of qSW2 for leaf slow wilting in soybean 被引量:1
2
作者 Shengyou Li Changling Wang +5 位作者 Chunjuan Yan Xugang Sun Lijun Zhang Yongqiang Cao Wenbin Wang Shuhong Song 《The Crop Journal》 SCIE CSCD 2024年第1期244-251,共8页
Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improv... Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improvement.A panel of 188 accessions and a set of recombinant inbred lines produced from a cross between cultivars Liaodou 14 and Liaodou 21 were used to identify quantitative-trait loci(QTL)associated with SW.Plants were genotyped by Specific-locus amplified fragment sequencing and seedling leaf wilting was assessed under three water-stress treatments.A genome-wide association study identified 26 SW-associated single-nucleotide polymorphisms(SNPs),including three located in a 248-kb linkage-disequilibrium(LD)block on chromosome 2.Linkage mapping revealed a major-effect QTL,qSW2,associated with all three treatments and adjacent to the LD block.Fine mapping in a BC_(2)F_(3) population derived from a backcross between Liaodou 21 and R26 confined qSW2 to a 60-kb interval.Gene expression and sequence variation analysis identified the gene Glyma.02 g218100,encoding an auxin transcription factor,as a candidate gene for qSW2.Our results will contribute significantly to improving drought-resistant soybean cultivars by providing genetic information and resources. 展开更多
关键词 Drought GWAS Linkage mapping Slow wilting soybean(Glycine max)
下载PDF
CRISPR/CasRx-mediated resistance to Soybean mosaic virus in soybean
3
作者 Le Gao Lijun Xie +9 位作者 Yanmin Xiao Xinge Cheng Ruosi Pu Ziheng Zhang Yu Liu Shaopei Gao Zilong Zhang Haoran Qu Haijian Zhi Kai Li 《The Crop Journal》 SCIE CSCD 2024年第4期1093-1101,共9页
Soybean mosaic virus(SMV),an RNA virus,is the most common and destructive pathogenic virus in soybean fields.The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to... Soybean mosaic virus(SMV),an RNA virus,is the most common and destructive pathogenic virus in soybean fields.The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to viruses;hence,this study aimed to engineer SMV resistance in soybean using this system.Specifically,multiple sgRNAs were designed to target positive-and/or negative-sense strands of the SMV HC-Pro gene.Subsequently,the corresponding CRISPR/CasRx vectors were constructed and transformed into soybeans.After inoculation with SMV,39.02%,35.77%,and 18.70%of T_(1)plants were confirmed to be highly resistant(HR),resistant(R),and mildly resistant(MR)to SMV,respectively,whereas only 6.50%were identified as susceptible(S).Additionally,qRT-PCR and DAS-ELISA showed that,both at 15 and 30 d post-inoculation(dpi),SMV accumulation significantly decreased or was even undetectable in HR and R plants,followed by MR and S plants.Additionally,the expression level of the CasRx gene varied in almost all T_(1)plants with different resistance level,both at 15 and 30 dpi.Furthermore,when SMV resistance was evaluated in the T_(2)generation,the results were similar to those recorded for the T_(1)generation.These findings provide new insights into the application of the CRISPR/CasRx system for soybean improvement and offer a promising alternative strategy for breeding for resistance to biotic stress that will contribute to the development of SMV-immune soybean germplasm to accelerate progress towards greater soybean crop productivity. 展开更多
关键词 soybean RNA virus soybean mosaic virus RESISTANCE CRISPR/CasRx
下载PDF
Assessing the Efficacy of Wheat-Soybean Based Intercropping System at Different Plant Densities in Bambili, Cameroon
4
作者 Lendzemo E. Tatah Jeazet K. Teitiogo +3 位作者 Oben Tom Tabi Tange D. Achiri Njualem D. Khumbah Chi Christopher Tamu 《American Journal of Plant Sciences》 CAS 2024年第4期235-251,共17页
Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to inve... Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended. 展开更多
关键词 Competitive Ration Land Equivalence Ration INTERCROP soybean WHEAT
下载PDF
Identification of Rhizobia Isolated from Nodules of Mexican Commercial Soybean Varieties
5
作者 Cecilia Vázquez Rodríguez Lourdes Vital López +1 位作者 Jesús Gerardo García Olivares Homar Rene Gill Langarica 《American Journal of Plant Sciences》 CAS 2024年第1期29-45,共17页
Rhizobia, crucial for nitrogen fixation in leguminous plants, play a vital role in soybean cultivation. This study, conducted in Mexico, a major soybean importer, aimed to identify bacteria from nodules of five soybea... Rhizobia, crucial for nitrogen fixation in leguminous plants, play a vital role in soybean cultivation. This study, conducted in Mexico, a major soybean importer, aimed to identify bacteria from nodules of five soybean varieties in high-production regions. Multilocus sequence analysis (MLSA) was employed for enhanced species resolution. The study identified six Bradyrhizobium species: Bradyrhizobium japonicum USDA 110, Bradyrhizobium japonicum USDA 6, Bradyrhizobium elkanii USDA 76, Bradyrhizobium neotropicale, Bradyrhizobium lablabi, and Bradyrhizobium icense. Bradyrhizobium japonicum USDA 110 predominated in the soils, displaying symbiotic preference for the Huasteca 400 variety. However, phylogenetic analysis didn't reveal a clear association between strains, soil, and soybean variety. This research sheds light on the diversity of rhizobia in Mexican soybean cultivation, contributing to the understanding of symbiotic relationships in soybean production systems. 展开更多
关键词 NODULES soybean Housekeeping Genes MLSA RHIZOBIA BRADYRHIZOBIUM Nitrogen Fixation SYMBIOSIS Phylogenetic Analysis
下载PDF
J-family genes redundantly regulate flowering time and increase yield in soybean
6
作者 Haiyang Li Zheng Chen +10 位作者 Fan Wang Hongli Xiang Shuangrong Liu Chuanjie Gou Chao Fang Liyu Chen Tiantian Bu Fanjiang Kong Xiaohui Zhao Baohui Liu Xiaoya Lin 《The Crop Journal》 SCIE CSCD 2024年第3期944-949,共6页
Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the ma... Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding. 展开更多
关键词 soybean Flowering time YIELD J-family genes
下载PDF
Soybean maize strip intercropping:A solution for maintaining food security in China
7
作者 Jiang Liu Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2503-2506,共4页
The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,pr... The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,promoting conventional intercropping strategies in modern agriculture can prove challenging.The innovative technology of soybean maize strip intercropping(SMSI)has been proposed as a solution.This system has produced remarkable results in improving domestic soybean and maize production for both food security and sustainable agriculture.In this article,we provide an overview of SMSI and explain how it differs from traditional intercropping.We also discuss the core principles that foster higher yields and the prospects for its future development. 展开更多
关键词 strip intercropping food security soybean MAIZE spatial arrangement
下载PDF
Drought-triggered repression of miR166 promotes drought tolerance in soybean
8
作者 Chen Zhao Jingjing Ma +7 位作者 Chen Yan Yu Jiang Yaohua Zhang Yudan Lu Ye Zhang Suxin Yang Xianzhong Feng Jun Yan 《The Crop Journal》 SCIE CSCD 2024年第1期154-163,共10页
Drought stress limits agricultural productivity worldwide.Identifying and characterizing genetic components of drought stress-tolerance networks may improve crop resistance to drought stress.We show that the regulator... Drought stress limits agricultural productivity worldwide.Identifying and characterizing genetic components of drought stress-tolerance networks may improve crop resistance to drought stress.We show that the regulatory module formed by miR166 and its target gene,ATHB14-LIKE,functions in the regulation of drought tolerance in soybean(Glycine max).Drought stress represses the accumulation of miR166,leading to upregulation of its target genes.Optimal knockdown of miR166 in the stable transgenic line GmSTTM166 conferred drought tolerance without affecting yield.Expression of ABA signaling pathway genes was regulated by the miR166-mediated regulatory pathway,and ATHB14-LIKE directly activates some of these genes.There is a feedback regulation between ATHB14-LIKE and MIR166 genes,and ATHB14-LIKE inhibits MIR166 expression.These findings reveal that drought-triggered regulation of the miR166-mediated regulatory pathway increases plants drought resistance,providing new insights into drought stress regulatory network in soybean. 展开更多
关键词 soybean Drought stress miRNA ABA signaling
下载PDF
GmSTF accumulation mediated by DELLA protein GmRGAs contributes to coordinating light and gibberellin signaling to reduce plant height in soybean
9
作者 Zhuang Li Qichao Tu +7 位作者 Xiangguang Lyu Qican Cheng Ronghuan Ji Chao Qin Jun Liu Bin Liu Hongyu Li Tao Zhao 《The Crop Journal》 SCIE CSCD 2024年第2期432-442,共11页
Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate... Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization. 展开更多
关键词 DELLA protein GmRGAs GmSTFs Plant height soybean
下载PDF
Biomineralization of soil with crude soybean urease using different calcium salts
10
作者 Yajie Weng Junjie Zheng +2 位作者 Hanjiang Lai Mingjuan Cui Xingzhi Ding 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1788-1798,共11页
Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chl... Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chloride (CaCl_(2)),calcium acetate ((CH_(3)COO)_(2)Ca) and calcium nitrate (Ca(NO_(3))_(2)),were used to prepare the biotreatment solution to carry out the biomineralization tests in this paper.Two series of biomineralization tests in solution and sand column,respectively,were conducted.Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed to determine the microscopic characteristics of the precipitated calcium carbonate (CaCO_(3)) crystals.The experimental results indicate that the biomineralization effect is the best for the CaCl2 case,followed by (CH_(3)COO)_(2)Ca,and worst for Ca(NO_(3))_(2) under the test conditions of this study (i.e.1 mol/L of calcium salt-urea).The mechanism for the effect of the calcium salt on the biomineralization of crude soybean urease mainly involves: (1) inhibition of urease activity,and (2) influence on the crystal size and morphology of CaCO_(3).Besides Ca^(2+) ,the anions in solution can inhibit the activity of crude soybean urease,and NO_(3)− has a stronger inhibitory effect on the urease activity compared with both CH_(3)COO^(−) and Cl^(−) .The co-inhibition of Ca^(2+) and NO_(3)− on the activity of urease is the key reason for the worst biomineralization of the Ca(NO_(3))_(2) case in this study.The difference in biomineralization between the CaCl_(2) and (CH_(3)COO)_(2) Ca cases is strongly correlated with the crystal morphology of the precipitated CaCO_(3). 展开更多
关键词 BIOMINERALIZATION Crude soybean urease Calcium salt Influence mechanism
下载PDF
Wild soybean(Glycine soja)transcription factor GsWRKY40 plays positive roles in plant salt tolerance
11
作者 Minglong Li Man Xue +7 位作者 Huiying Ma Peng Feng Tong Chen Xiaohuan Sun Qiang Li Xiaodong Ding Shuzhen Zhang Jialei Xiao 《The Crop Journal》 SCIE CSCD 2024年第3期766-775,共10页
Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes p... Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes plant salt stress.GsWRKY40 was highly expressed in wild soybean roots and was up-regulated by salt treatment.GsWRKY40 was localized in nucleus and demonstrated DNA-binding activities but without transcriptional activation.Mutation and overexpression of GsWRKY40 altered salt tolerance of Arabidopsis plants.To understand the molecular mechanism of GsWRKY40 in regulating plant salt resistance,we screened a cDNA library and identified a GsWRKY40 interacting protein GsbHLH92 by using yeast two-hybrid approach.The physical interaction of GsWRKY40 and GsbHLH92 was confirmed by co-immunoprecipitation(co-IP),GST pull-down,and bimolecular fluorescence complementation(BiFC)techniques.Intriguingly,co-overexpression of GsWRKY40 and GsbHLH92 resulted in higher salt tolerance and lower ROS levels than overexpression of GsWRKY40 or GsbHLH92 in composite soybean plants,suggesting that GsWRKY40 and GsbHLH92 may synergistically regulate plant salt resistance through inhibiting ROS production.qRT-PCR data indicated that the expression level of GmSPOD1 gene encoding peroxidase was cooperatively regulated by GsWRKY40 and GsbHLH92,which was confirmed by using a dual luciferase report system and yeast one-hybrid experiment.Our study reveals a pathway that GsWRKY40 and GsbHLH92 collaboratively up-regulate plant salt resistance through impeding GmSPOD1 expression and reducing ROS levels,providing a novel perspective on the regulatory mechanisms underlying plant tolerance to abiotic stresses. 展开更多
关键词 Wild soybean Transcription factor Salt stress ROS
下载PDF
Application of organic manure as a potential strategy to alleviate the limitation of microbial resources in soybean rhizospheric and bulk soils
12
作者 Zhimin Wu Xiaozeng Han +5 位作者 Xu Chen Xinchun Lu Jun Yan Wei Wang Wenxiu Zou Lei Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期2065-2082,共18页
The development and vigor of soil microorganisms in terrestrial ecosystems are frequently constrained by the limited availability of essential elements such as carbon(C),nitrogen(N),and phosphorus(P).In this study,we ... The development and vigor of soil microorganisms in terrestrial ecosystems are frequently constrained by the limited availability of essential elements such as carbon(C),nitrogen(N),and phosphorus(P).In this study,we investigated the impact of long-term application of varying levels of organic manure,low(7.5 Mg ha^(−1)yr^(−1)),moderate(15.0 Mg ha^(−1)yr^(−1)),and high(22.5 Mg ha^(−1)yr^(−1)),on the stoichiometry of enzymes and the structures of the microbial communities in soybean rhizospheric and bulk soils.The main goal of this research was to examine how soil microbial resource limitations in the rhizosphere respond to different long-term fertilization strategies.The soil enzymatic activities were quantified,and the structure of the microbial community was assessed by analyzing phospholipid fatty acid profiles.When compared to the bulk soil,the rhizospheric soil had significant increases in microbial biomass carbon(MBC),nitrogen(MBN),and phosphorus(MBP),with MBC increasing by 54.19 to 72.86%,MBN by 47.30 to 48.17%,and MBP by 17.37 to 208.47%.Compared with the unfertilized control(CK),the total microbial biomasses of the rhizospheric(increased by 22.80 to 90.82%)and bulk soils(increased by 10.57 to 60.54%)both exhibited increases with the application of organic manure,and the rhizospheric biomass was higher than that of bulk soil.Compared with bulk soil,the activities of C-,N-and P-acquiring enzymes of rhizospheric soil increased by 22.49,14.88,and 29.45%under high levels of organic manure,respectively.Analyses of vector length,vector angle,and scatter plots revealed that both rhizospheric and bulk soils exhibited limitations in terms of both carbon(C)and phosphorus(P)availability.The results of partial least-squares path modelling indicated that the rhizospheric soil exhibited a more pronounced response to the rate of manure application than the bulk soil.The varying reactions of rhizospheric and bulk soils to the extended application of organic manure underscore the crucial function of the rhizosphere in mitigating limitations related to microbial resources,particularly in the context of different organic manure application rates. 展开更多
关键词 enzymatic stoichiometry RHIZOSPHERE phospholipid fatty acids soybean organic manure
下载PDF
Standardized ileal digestibility of amino acids in soybean meal fed to non-pregnant and pregnant sows
13
作者 Ke Wang Ya Wang +11 位作者 Lei Guo Yong Zhuo Lun Hua Lianqiang Che Shengyu Xu Ruinan Zhang Jian Li Bin Feng Zhengfeng Fang Xuemei Jiang Yan Lin De Wu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期362-373,共12页
Background Two studies were designed to determine standard ileal crude protein(CP)and amino acid(AA)digestibility of soybean meal(SBM)from different origins fed to non-pregnant and pregnant sows.Seven solvent-extracte... Background Two studies were designed to determine standard ileal crude protein(CP)and amino acid(AA)digestibility of soybean meal(SBM)from different origins fed to non-pregnant and pregnant sows.Seven solvent-extracted SBMs from soybeans produced in the USA,Brazil,and China were selected.In Exp.1,eight different diets were created:a nitrogen(N)-free diet and 7 experimental diets containing SBM from different origins as the only N source.Eight non-pregnant,multiparous sows were arranged in an 8×8 Latin square design(8 periods and 8 diets).In Exp.2,the diet formula was the same as in Exp.1.Eight gestating sows(parity 3)were assigned to 4 different diets in a replicated 4×3 Youden square design(three periods and four diets)in mid-gestation and again in late-gestation stages.Results When fed to non-pregnant and late-gestating sows,the standardized ileal digestibility(SID)of CP and most AAs from different SBM were not significantly different(P>0.05).When fed to mid-gestating sows,the SID values for Arg,His,Lys,Phe,Cys,Gly,Ser,and Tyr in SBM 1 were lower than in SBM 4 and 5(P<0.05),whereas SID for Leu from SBM 5 was higher than in SBM 1 and 4(P<0.05).SID values for Ile,Ala,and Asp from SBM 4 were lower than in SBM 1 and 5(P<0.05).Sows had significantly greater SID values for Lys,Ala,and Asp during mid-gestation when compared with late-gestation stages(P<0.05).Mid-gestating sows had greater SID value for Val and lower SID value for Tyr when compared with non-pregnant and late-gestating sows(P<0.01),whereas non-pregnant sows had significantly greater SID value for Met when compared with gestating sows(P<0.01).Conclusions When fed to mid-gestating sows,the SID values for most AAs varied among SBM samples.The SID values for Lys,Met,Val,Ala,Asp,and Tyr in SBM were affected by sow gestation stages.Our findings provide a cornerstone for accurate SBM use in sow diets. 展开更多
关键词 Amino acids SOWS soybean meal Standardized ileal digestibility
下载PDF
A telomere-to-telomere genome assembly of Zhonghuang 13,a widely-grown soybean variety from the original center of Glycine max
14
作者 Anqi Zhang Tangchao Kong +21 位作者 Baiquan Sun Shizheng Qiu Jiahe Guo Shuyong Ruan Yu Guo Jirui Guo Zhishuai Zhang Yue Liu Zheng Hu Tao Jiang Yadong Liu Shuqi Cao Shi Sun Tingting Wu Huilong Hong Bingjun Jiang Maoxiang Yang Xiangyu Yao Yang Hu Bo Liu Tianfu Han Yadong Wang 《The Crop Journal》 SCIE CSCD 2024年第1期142-153,共12页
Soybean(Glycine max)stands as a globally significant agricultural crop,and the comprehensive assembly of its genome is of paramount importance for unraveling its biological characteristics and evolutionary history.Nev... Soybean(Glycine max)stands as a globally significant agricultural crop,and the comprehensive assembly of its genome is of paramount importance for unraveling its biological characteristics and evolutionary history.Nevertheless,previous soybean genome assemblies have harbored gaps and incompleteness,which have constrained in-depth investigations into soybean.Here,we present Telomere-to-Telomere(T2T)assembly of the Chinese soybean cultivar Zhonghuang 13(ZH13)genome,termed ZH13-T2T,utilizing PacBio Hifi and ONT ultralong reads.We employed a multi-assembler approach,integrating Hifiasm,NextDenovo,and Canu,to minimize biases and enhance assembly accuracy.The assembly spans 1,015,024,879 bp,effectively resolving all 393 gaps that previously plagued the reference genome.Our annotation efforts identified 50,564 high-confidence protein-coding genes,707 of which are novel.ZH13-T2T revealed longer chromosomes,421 not-aligned regions(NARs),112 structure variations(SVs),and a substantial expansion of repetitive element compared to earlier assemblies.Specifically,we identified 25.67 Mb of tandem repeats,an enrichment of 5S and 48S rDNAs,and characterized their genotypic diversity.In summary,we deliver the first complete Chinese soybean cultivar T2T genome.The comprehensive annotation,along with precise centromere and telomere characterization,as well as insights into structural variations,further enhance our understanding of soybean genetics and evolution. 展开更多
关键词 soybean Telomere-to-Telomere assembly Zhonghuang 13 Structure variations
下载PDF
Soybean(Glycine max)rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorusmineralizing-related bacteria in phosphate deficient acidic soils
15
作者 Qianqian Chen Qian Zhao +9 位作者 Baoxing Xie Xing Lu Qi Guo Guoxuan Liu Ming Zhou Jihui Tian Weiguo Lu Kang Chen Jiang Tian Cuiyue Liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1685-1702,共18页
Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba... Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus. 展开更多
关键词 organic phosphorus acid phosphatase soybean bacterial community phoC-harboring bacteria RHIZOSPHERE
下载PDF
GmAP1d regulates flowering time under long-day photoperiods in soybean
16
作者 Shiyu Guo Yanfei Li +9 位作者 Hongmei Qiu Guoyu Hu Chaosen Zhao Ruizhen Wang Hao Zhang Yu Tian Xiaoyu Li Bin Liu Ying-hui Li Li-juan Qiu 《The Crop Journal》 SCIE CSCD 2024年第3期845-855,共11页
Flowering time is important for adaptation of soybean(Glycine max)to different environments.Here,we conducted a genome-wide association study of flowering time using a panel of 1490 cultivated soybean accessions.We id... Flowering time is important for adaptation of soybean(Glycine max)to different environments.Here,we conducted a genome-wide association study of flowering time using a panel of 1490 cultivated soybean accessions.We identified three strong signals at the qFT02-2 locus(Chr02:12037319–12238569),which were associated with flowering time in three environments:Gongzhuling,Mengcheng,and Nanchang.By analyzing linkage disequilibrium,gene expression patterns,gene annotation,and the diversity of variants,we identified an AP1 homolog as the candidate gene for the qFT02-2 locus,which we named GmAP1d.Only one nonsynonymous polymorphism existed among 1490 soybean accessions at position Chr02:12087053.Accessions carrying the Chr02:12087053-T allele flowered significantly earlier than those carrying the Chr02:12087053-A allele.Thus,we developed a cleaved amplified polymorphic sequence(CAPS)marker for the SNP at Chr02:12087053,which is suitable for marker-assisted breeding of flowering time.Knockout of GmAP1d in the‘Williams 82’background by gene editing promoted flowering under long-day conditions,confirming that GmAP1d is the causal gene for qFT02-2.An analysis of the region surrounding GmAP1d revealed that GmAP1d was artificially selected during the genetic improvement of soybean.Through stepwise selection,the proportion of modern cultivars carrying the Chr02:12087053-T allele has increased,and this allele has become nearly fixed(95%)in northern China.These findings provide a theoretical basis for better understanding the molecular regulatory mechanism of flowering time in soybean and a target gene that can be used for breeding modern soybean cultivars adapted to different latitudes. 展开更多
关键词 soybean Flowering time GWAS GmAP1d Long-day conditions
下载PDF
Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean
17
作者 Ping Chen Qing Du +8 位作者 Benchuan Zheng Huan Yang Zhidan Fu Kai Luo Ping Lin Yilin Li Tian Pu Taiwen Yong Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1910-1928,共19页
Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery gr... Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation. 展开更多
关键词 relay intercropping GENOTYPE crop configuration symbiotic nitrogen fixation soybean NODULE
下载PDF
Corn and Soybean Growth as Affected by Wastewater-Derived Struvite-Phosphorus Sources and Irrigation Water Types
18
作者 Machaela Morrison Kristofor R. Brye +2 位作者 Gerson Drescher Jennie Popp Lisa S. Wood 《Agricultural Sciences》 2024年第4期472-504,共33页
Struvite (MgNH<sub>4</sub>PO<sub>4</sub>·6H<sub>2</sub>O) produced synthetically from a stock solution of known phosphorus (P) and nitrogen (N) concentrations has been shown to... Struvite (MgNH<sub>4</sub>PO<sub>4</sub>·6H<sub>2</sub>O) produced synthetically from a stock solution of known phosphorus (P) and nitrogen (N) concentrations has been shown to be an effective, alternative fertilizer-P source for various crops, but little is known about the potential agronomic effectiveness of struvite created from an actual municipal wastewater source. The objective of this study was to evaluate the effects of soil [i.e., Creldon silt loam (Oxyaquic Fragiudalf) and Calloway silt loam (Aquic Fraglossudalf) series], fertilizer-P source [i.e., synthetically produced electrochemically precipitated struvite (ECSTsyn), real-wastewater-derived ECST (ECSTreal), chemically precipitated struvite (CPST), monoammonium phosphate (MAP), and an unamended control (UC)], and irrigation water type (i.e., tapwater and struvite-removed wastewater) on corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] growth and N, P, and magnesium (Mg) uptake in a 60-day, greenhouse potted-plant study. Crop growth and N, P, and Mg uptakes for the struvite treatments (i.e., CPST, ECSTsyn, and ECSTreal) were generally similar to or at least 1.2 times greater than MAP. The ECSTsyn material commonly had up to five times greater N, P, and Mg uptake in corn and soybean than any other fertilizer-P source. Struvite-removed wastewater resulted in at least 1.3 times lower dry matter and N, P, and Mg uptake than tapwater. Similar corn and soybean results from the struvite fertilizers among the various soil-water type combinations compared to MAP suggest that struvite generates similar crop responses as at least one widely used, commercially available, multi-nutrient fertilizer-P source. 展开更多
关键词 ARKANSAS Corn Production soybean Production STRUVITE Recovered Nutrients
下载PDF
Dormancy of Amaranthus retroflexus L. Seeds and Physiological Response Seedlings to Acifluorfen Sodium
19
作者 Ding Wei Liu Junliang +1 位作者 Cheng Zhuo Cheng Peng 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期1-10,共10页
Amaranthus retroflexus L. is a serious and widespread malignant weed in soybean fields in Heilongjiang Province. Exploring the dormancy characteristics of A. retroflexus L. seeds and the physiological response of its ... Amaranthus retroflexus L. is a serious and widespread malignant weed in soybean fields in Heilongjiang Province. Exploring the dormancy characteristics of A. retroflexus L. seeds and the physiological response of its seedlings to acifluorfen sodium can provide a basis for further researches on its resistance mechanism. Using newly harvested and stored A. retroflexus L. seeds for one year as experimental materials, the effects of different concentrations of HCl, NaOH, water temperature, gibberellic acid(GA) and polyethylene glycol(PEG) on the dormancy and germination of A. retroflexus L. seeds were studied. The sensitivity of A. retroflexus L.to acifluorfen sodium was determined using bioassay. The effects on leaf chlorophyll content and target enzyme activity were studied at a normal dosage of 360 g a.i. hm^(-2) and a doubling dosage of 720 g a.i. hm^(-2) of acifluorfen sodium. Newly harvested seeds exhibiting dormancy were soaked in water of various temperatures and in different concentrations of NaOH and HCl, which were ineffective in breaking the seed dormancy. GA could break seed dormancy, and the highest seed germination rate reached 93.33% when they were soaked at 3 000 mg·L^(-1) for 72 h and 4 000 mg·L^(-1) for 48 h. The drought stress was simulated with a 15%-25% polyethylene glycol solution, which had no significant effect on the seed germination rate. The GR_(50) value of acifluorfen sodium for A. retroflexus L. was 705.7 g a.i. hm^(-2), which was 1.96 times the recommended dose in the field. After the application of different doses of acifluorfen sodium, the chlorophyll content of A. retroflexus L. reached its minimum value 3 days after treatment(DAT), and then gradually increased. The activity of the target enzyme protoporphyrinogen oxidase(PPO) reached the highest value at 7 DAT under different dosages, and gradually returned to normal levels thereafter. Soaking with gibberellin was an effective method to break seed dormancy. A. retroflexus L. seeds had certain drought resistance during the germination process. A. retroflexus L. was not sensitive to acifluorfen sodium and acifluorfen sodium ether, and could not effectively inhibit the PPO activity, indicating that A. retroflexus L. had target resistance to acifluorfen sodium. 展开更多
关键词 Amaranthus retroflexus L.seed seed dormancy acifluorfen sodium target resistance
下载PDF
Application of organic fertilizer for improving soybean production under acidic stress
20
作者 Putri Gita Lestari Ayu Oshin Yap Sinaga +2 位作者 David Septian Sumanto Marpaung Winati Nurhayu Indah Oktaviani 《Oil Crop Science》 CSCD 2024年第1期46-52,共7页
The presence of acidic soil in rural areas poses difficulties for agricultural production.One factor regulating soil pH is the overuse of inorganic fertilizer.The increased use of fertilizers in soybean production not... The presence of acidic soil in rural areas poses difficulties for agricultural production.One factor regulating soil pH is the overuse of inorganic fertilizer.The increased use of fertilizers in soybean production not only raises sustainability concerns but also contributes to soil acidity.Therefore,the use of organic fertilizer could offer a solution for addressing both issues related to soil acidity and sustainability.The purpose of this study was to investigate the manipulation of soil pH using organic fertilizer for soybean production under acidic stress.The planting medium,consisting of a mixture of topsoil,rice husk charcoal,and organic fertilizer(in a ratio of 2:1:1),was supplemented with 0.5 g of NPK fertilizer as a basal treatment in each planting medium.To regulate the soil acidity to pH 4,we added FeSO_(4) and allowed the mixture to incubate for 30 days.The results demonstrate that the application of three types of organic fertilizers chicken manure(P1),oil palm empty bunch fertilizer(P2),and vermicompost(P3)positively impacts the growth of three soybean varieties.The findings indicate that the application of P2 organic fertilizer can increase vegetative growth almost 50%in soybeans on acidic soil,including plant height,leaf count,and root length.Meanwhile,applying P3 organic fertilizer can boost reproductive growth responses in soybeans on acidic soil,such as pod number(from around 0-4 unit to 42-51 unit),grain number(from around 0-5 unit to 88-90 unit),and grain weight(from around 0-0.37 g to 12-25 g).Organic fertilizer has the potential to regulate soil pH,promoting higher yields of soybeans under acidic stress. 展开更多
关键词 Organic fertilizer Acidic stress soybean Agriculture production
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部