期刊文献+
共找到23,890篇文章
< 1 2 250 >
每页显示 20 50 100
Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat-cotton cropping system
1
作者 Changqin Yang Xiaojing Wang +6 位作者 Jianan Li Guowei Zhang Hongmei Shu Wei Hu Huanyong Han Ruixian Liu Zichun Guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期669-679,共11页
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott... Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system. 展开更多
关键词 straw return crop yields SOC soil aggregates wheat-cotton cropping system
下载PDF
Optimization of inter-seasonal nitrogen allocation increases yield and resource-use efficiency in a water-limited wheat-maize cropping system in the North China Plain
2
作者 Xiaonan Zhou Chenghang Du +7 位作者 Haoran Li Zhencai Sun Yifei Chen Zhiqiang Gao Zhigan Zhao Yinghua Zhang Zhimin Wang Ying Liu 《The Crop Journal》 SCIE CSCD 2024年第3期907-914,共8页
Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study ai... Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system. 展开更多
关键词 cropping system Water-saving irrigation North China Plain Nitrogen optimization Sustainable intensification
下载PDF
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
3
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes Soil N Soil Organic C Green Manure Deer Browse Forage cropping Systems
下载PDF
Research Progress on Effects of Continuous Cropping on Soil Microbial Florae and Its Restoration
4
作者 Zaixiang ZHU Zebin CHEN +5 位作者 Shengguang XU Zhiwei FAN Li LIN Tianfang WANG Qingmei LI Yue YAN 《Agricultural Biotechnology》 2024年第2期75-80,共6页
Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potent... Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potential decline are becoming more and more common. At present, the causes of continuous cropping obstacles and continuous cropping restoration have become a hot issue in agricultural research. This paper summarized the effects of continuous cropping obstacles on soil microbial community structure and main technical methods to repair continuous cropping obstacles, such as agricultural measure management, microbial balance adjustment and soil improvement, aiming to provide theoretical reference for protecting the sustainable utilization of soil ecosystem and ensuring the stability of crop production. 展开更多
关键词 Continuous cropping obstacle Rhizosphere soil MICROORGANISM Soil remediation Soil improvement
下载PDF
Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system 被引量:1
5
作者 ZHANG Chong WANG Dan-dan +6 位作者 ZHAO Yong-jian XIAO Yu-lin CHEN Huan-xuan LIU He-pu FENG Li-yuan YU Chang-hao JU Xiao-tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1883-1895,共13页
Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Here... Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Herein,we report the NH_3 emissions,crop yield and changes in soil fertility in a long-term trial with various fertilization regimes,to explore whether NH_3 emissions can be significantly reduced using the 4R nutrient stewardship (4Rs),and its interaction with the organic amendments (i.e.,manure and straw) in a wheat–maize rotation.Implementing the 4Rs significantly reduced NH_3 emissions to 6 kg N ha~(–1) yr~(–1) and the emission factor to 1.72%,without compromising grain yield (12.37 Mg ha~(–1) yr~(–1))and soil fertility (soil organic carbon of 7.58 g kg~(–1)) compared to the conventional chemical N management.When using the 4R plus manure,NH_3 emissions (7 kg N ha~(–1) yr~(–1)) and the emission factor (1.74%) were as low as 4Rs,and grain yield and soil organic carbon increased to 14.79 Mg ha~(–1) yr~(–1) and 10.09 g kg~(–1),respectively.Partial manure substitution not only significantly reduced NH_3 emissions but also increased crop yields and improved soil fertility,compared to conventional chemical N management.Straw return exerted a minor effect on NH_3 emissions.These results highlight that 4R plus manure,which couples nitrogen and carbon management can help achieve both high yields and low environmental costs. 展开更多
关键词 ammonia emission crop yield 4R nutrient stewardship partial manure substitution winter wheat–summer maize cropping system
下载PDF
Maize-soybean relay cropping increases soybean yield synergistically by extending the post-anthesis leaf stay-green period and accelerating grain filling
6
作者 Yiling Li Ping Chen +7 位作者 Zhidan Fu Kai Luo Ping Lin Chao Gao Shanshan Liu Tian Pu Taiwen Yong Wenyu Yang 《The Crop Journal》 SCIE CSCD 2023年第6期1921-1930,共10页
Relay cropping of Poaceae and Fabaceae promotes high yield and land-use efficiency by allowing a double harvest.However,it is difficult to increase yield synergistically because of the reduced photosynthetic abilities... Relay cropping of Poaceae and Fabaceae promotes high yield and land-use efficiency by allowing a double harvest.However,it is difficult to increase yield synergistically because of the reduced photosynthetic abilities of legume leaves under the shade of graminoids.Leaf photosynthetic capacity in relay cropping systems is associated with ecological niche differentiation and photosynthetic compensation after restoration of normal light.We conducted a field experiment in southwest China in 2020–2021 to evaluate the effects of three cropping patterns:maize–soybean relay cropping(IMS),monoculture maize(MM),and monoculture soybean(SS),and N application levels:no N application(NN:0 kg N ha^(−1)),reduced N(RN:180 kg N ha^(−1)),and conventional N(CN:240 kg N ha^(−1)).Compared to monocropping,relay cropping increased the stay-green traits of maize and soybean by 13%and 89%,respectively.Relay cropping prolonged the leaf stay-green duration in the maize and soybean lag phase by almost 4 and 8 days,respectively.Relay cropping maize(IM)increased the leaf area index(LAI)by 79.4%to 88.5%under NN and 55.5%to 148%under RN.Relay cropping soybean(IS)increased the LAI from 115%to 437%at days 40 to 50 after anthesis.IM increased yield by 65.6%.IS increased yield by 9.7%.HI and system yield were at their highest values under RN.In the relay cropping system,reduced N application extended green leaf duration,increased photosynthesis inside the canopy at multiple levels,ultimately increases soybean yield synergistically. 展开更多
关键词 Leaf stay-green Nitrogen reduction Maize-soybean relay cropping Yield
下载PDF
Effects of Allelochemicals on Root Growth and Pod Yield in Response to Continuous Cropping Obstacle of Peanut
7
作者 Zhaohui Tang Feng Guo +8 位作者 Li Cui Qingkai Li Jialei Zhang Jianguo Wang Sha Yang Jingjing Meng Xinguo Li Ping Liu Shubo Wan 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期17-34,共18页
Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study wa... Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals,p-hydroxybenzoic acid(H),cinnamic acid(C),phthalic acid(P),and their mixtures(M)on peanut root growth and productivity in response to CC obstacle.Treatment with H,C,P,and M significantly decreased the plant height,dry weight of the leaves and stems,number of branches,and length of the lateral stem compared with control.Exogenous application of H,C,P,and M inhibited the peanut root growth as indicated by the decreased root morphological characters.The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots.Meanwhile,treatment with H,C,P,and M reduced the contents of total soluble sugar and total soluble protein.Analysis of ATPase activity,nitrate reductase activity,and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR,and the inhibition of root system.Consequently,allelochemicals significantly decreased the pod yield of peanut compared with control.Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system,unbalancing the osmolytes accumulation,and decreasing the activities of root-related enzymes. 展开更多
关键词 PEANUT continuous cropping obstacle root growth pod yield
下载PDF
Estimating Carbon Capture Potential of Fallow Weeds in Rice Cropping Systems
8
作者 Ge Chen Yuling Kang +2 位作者 Fangbo Cao Jiana Chen Min Huang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期71-77,共7页
Weeds occurred during the fallow season can well perform the function of carbon(C)capture due to receiving little human disturbance.This study aimed to evaluate the C capture potential of fallow weeds in rice(Oryza sa... Weeds occurred during the fallow season can well perform the function of carbon(C)capture due to receiving little human disturbance.This study aimed to evaluate the C capture potential of fallow weeds in rice(Oryza sativa L.)cropping systems.A six-region,two-year on-farm investigation and a three-year tillage experiment were conducted to estimate C capture in fallow weeds in rice cropping systems.The on-farm investigation showed that the average mean C capture by fallow weeds across six regions and two years reached 112 g m^(-2).The tillage experiment indicated that no-tillage practices increased C capture by fallow weeds by 80%on average as compared with conventional tillage.The results of this study not only contribute to an understanding of C capture potential of fallow weeds in rice cropping systems,but also provide a reference for including fallow weeds in the estimation of vegetative C sink. 展开更多
关键词 Carbon cycling fallow weeds NO-TILLAGE rice cropping system vegetative carbon sink
下载PDF
A dual-RPA based lateral flow strip for sensitive,on-site detection of CP4-EPSPS and Cry1Ab/Ac genes in genetically modified crops 被引量:1
9
作者 Jinbin Wang Yu Wang +7 位作者 Xiuwen Hu Yifan Chen Wei Jiang Xiaofeng Liu Juan Liu Lemei Zhu Haijuan Zeng Hua Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期183-190,共8页
Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSP... Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field. 展开更多
关键词 Genetically modifi ed crops On-site detection Lateral fl ow test strips Dual recombinase polymerase amplification (RPA)
下载PDF
Evaluation of Productive Plant Landscapes in Cold Regions Based on a Multiple Cropping Model
10
作者 Wu Zhi-heng Zhang Jia-xin +2 位作者 Zhu Xuan-bo Pan Sheng-kai Yan Yong-qing 《Journal of Northeast Agricultural University(English Edition)》 2023年第4期43-52,共10页
Four varieties of each rapeseed and buckwheat were planted in different sowing periods to explore a variety of planting patterns.A theoretical foundation was provided for the innovative application of cold region prod... Four varieties of each rapeseed and buckwheat were planted in different sowing periods to explore a variety of planting patterns.A theoretical foundation was provided for the innovative application of cold region productive plant landscapes.The analytic hierarchy process was employed to develop a model for the evaluation of multiple cropping systems.A comprehensive evaluation was conducted to study 10 indicators in plant type,flower color,flowering period,flower volume,branch coverage,plot average yield,number of grains per plant,yield per plant,thousand-grain quality and ecological adaptability in four different varieties of each rapeseed and buckwheat.The results indicated that flower color,ecological adaptability,plot average yield and flower volume were the most important indicators for the value of productive plant landscapes in cold regions.Concerning the sowing period,the optimal combination of varieties and planting times were March 31 for Qingza No.5(rapeseed)and July 18 for Xinong T1211(buckwheat). 展开更多
关键词 multiple cropping model RAPESEED BUCKWHEAT analytic hierarchy process comprehensive evaluation
下载PDF
Adding Value to Crop Production Systems by Integrating Forage Cover Crop Grazing
11
作者 Robert B. Mitchell Daren D. Redfearn +9 位作者 Kenneth P. Vogel Terry J. Klopfenstein Galen Erickson P. Stephen Baenziger Bruce E. Anderson Mary E. Drewnoski Jay Parsons Steven D. Masterson Marty R. Schmer Virginia L. Jin 《American Journal of Plant Sciences》 CAS 2024年第3期180-192,共13页
In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance... In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance was compared in the spring following autumn establishment as for age cover crops after soybean [Glycine max (L.) Merr.] grain harvest. Replicated pastures (0.4 ha) were no-till seeded in three consecutive years into soybean stubble in autumn, fertilized, and grazed the following spring near Ithaca, NE, USA. Each pasture (n = 3) was continuously stocked in spring with four yearling steers (380 ± 38 kg) for 17, 32, and 28 d in 2005, 2006, and 2007, respectively. In 2005, average daily gain (ADG) for steers grazing triticale exceeded the ADG for wheat by 0.31 kghd<sup>-1</sup>d<sup>-1</sup>. In 2006, wheat ADG exceeded that for triticale by 0.12 kghd<sup>-1</sup>d<sup>-1</sup>. In 2007, steers grazing wheat lost weight, while steers grazing triticale gained 0.20 kghd<sup>-1</sup>d<sup>-1</sup>. Based on the 3-year average animal gains valued at $1.32 kg<sup>-1</sup>, mean net return ($ ha<sup>-1</sup> yr<sup>-1</sup>) was $62.15 for triticale and $22.55 for wheat. Since these grazed cover crops provide ecosystem services in addition to forage, grazing could be viewed as a mechanism for recovering costs and adds additional value to the system. Based on this 3-year grazing trial, triticale was superior to wheat and likely will provide the most stable beef yearling performance across years with variable weather for the western Cornbelt USA. 展开更多
关键词 Cover crops SOYBEAN TRITICALE WHEAT
下载PDF
Assessment of Crop Yield in China Simulated by Thirteen Global Gridded Crop Models
12
作者 Dezhen YIN Fang LI +3 位作者 Yaqiong LU Xiaodong ZENG Zhongda LIN Yanqing ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期420-434,共15页
Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far o... Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China. 展开更多
关键词 global gridded crop model historical crop yield China multi-model evaluation
下载PDF
Exploring the Potential of Cowpea-Wheat Double Cropping in the Semi-Arid Region of the Southern United States Using the DSSAT Crop Model
13
作者 Prem Woli Gerald R. Smith +3 位作者 Charles R. Long Jackie C. Rudd Qingwu Xue Francis M. Rouquette Jr. 《Agricultural Sciences》 CAS 2023年第1期35-57,共23页
Information is limited on the potential of double-cropping cowpea (Vigna unguiculata L.) and wheat (Triticum aestivum L.) in the semiarid region of the southern United States. Using the Decision Support System for Agr... Information is limited on the potential of double-cropping cowpea (Vigna unguiculata L.) and wheat (Triticum aestivum L.) in the semiarid region of the southern United States. Using the Decision Support System for Agrotechnology Transfer (DSSAT) crop model and weather data of 80 years, we assessed the possibility of cowpea-wheat double-cropping in this region for grain purpose as affected by planting date and N application rate. Results showed that the possibility of double-cropping varied from 0% to 65%, depending on the cropping system. The possibility was less with systems comprising earlier planting dates of wheat and later planting dates of cowpea. Results indicated that cowpea-wheat double-cropping could be beneficial only when no N was applied, with wheat planted on October 15 or later. At zero N, the double-crops of cowpea planted on July 15 and wheat planted on November 30 were the most beneficial of all the 72 double-cropping systems studied. With a delay in planting cowpea, the percentage of beneficial double-cropping systems decreased. At N rates other than zero, fallow-wheat monocropping systems were more beneficial than cowpea-wheat double-cropping systems, and the benefit was greater at a higher N rate. At 100 kg N ha<sup>-1</sup>, the monocrop of wheat planted on October 15 was the most beneficial of all the 94 systems studied. Results further showed that fallow-wheat yields increased almost linearly with an increase in N rate from 0 to 100 kg&#8729;ha<sup>-1</sup>. Fallow-wheat grain yields were quadratically associated with planting dates. With an increase in N rate, wheat yields reached the peak with an earlier planting date. Wheat yields produced under monocropping systems were greater than those produced under double-cropping systems for any cowpea planting date. Cowpea yields produced under monocropping systems were greater than those produced under any double-cropping system. The relationship between cowpea grain yields and planting dates was quadratic, with July 1 planting date associated with the maximum yields. 展开更多
关键词 Cover-crop Cowpea-Wheat DSSAT Double-crop Model SEMI-ARID
下载PDF
The multiple roles of crop structural change in productivity,nutrition and environment in China:A decomposition analysis
14
作者 Xiangyang Zhang Yumei Zhang Shenggen Fan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1763-1773,共11页
China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nut... China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nutrient supply,and carbon emissions have changed.How to reallocate limited farmland among crops to achieve the multiple goals of agrifood systems becomes an important issue.This study explores the sources of land productivity and nutrition supply growth and carbon emissions reduction,and identifies the multiple roles of crop structural change from 2003 to 2020 based on a decomposition analysis.The results reveal that the growth within crops is still the primary driver in land productivity and nutrition supply and the reduction in carbon emissions.However,structural change also plays various roles at different periods.From 2003 to 2010,crop structural change increased the total calorie supply but lowered land productivity and contributed at least 70%of the total growth of carbon emissions.The crop structure was relatively stable,and their effects were modest from 2010 to 2015.From 2015 to 2020,the crop structural change began to play a greater role and generate synergistic effects in improving land productivity,micronutrient supply,and reducing carbon emissions,contributing to approximately a quarter of the growth of land productivity and 30%of total carbon emissions reduction.These results suggest that strategies for crop structural change should comprehensively consider its multiple impacts,aiming to achieve co-benefits while minimizing trade-offs. 展开更多
关键词 crop structural change land productivity NUTRITION carbon emissions
下载PDF
Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean
15
作者 Ping Chen Qing Du +8 位作者 Benchuan Zheng Huan Yang Zhidan Fu Kai Luo Ping Lin Yilin Li Tian Pu Taiwen Yong Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1910-1928,共19页
Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery gr... Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation. 展开更多
关键词 relay intercropping GENOTYPE crop configuration symbiotic nitrogen fixation SOYBEAN NODULE
下载PDF
Characteristics of the microbial communities regulate soil multi-functionality under different cover crop amendments in Ultisol
16
作者 Guilong Li Xiaofen Chen +8 位作者 Wenjing Qin Jingrui Chen Ke Leng Luyuan Sun Ming Liu Meng Wu Jianbo Fan Changxu Xu Jia Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期2099-2111,共13页
The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little i... The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.Here,we assessed the multifunctionality of soils subjected to four cover crop amendments(control,non-amended treatment;RD,radish monoculture;HV,hairy vetch monoculture;and RDHV,radish-hairy vetch mixture),and we investigated the contributions of soil microbial richness,network complexity,and ecological clusters to soil multifunctionality.Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality,and the radish-hairy vetch mixture rendered the highest enhancement.We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.Specifically,specialized microbes in a key ecological cluster(ecological cluster 2)of the soil microbial network were particularly important for maintaining soil multifunctionality.Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols. 展开更多
关键词 cover crops soil multifunctionality microbial richness network complexity ecological cluster
下载PDF
Comprehensive Overview and Analytical Study on Automatic Bird Repellent Laser System for Crop Protection
17
作者 Sireesha Abotula Srinivas Gorla +1 位作者 Prasad Reddy PVGD Mohankrishna S 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期38-53,共16页
Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This... Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This study presents a comprehensive overview of current bird repellant approaches used in agricultural contexts,as well as potential new ways. The bird repellent techniques include Internet of Things technology,Deep Learning,Convolutional Neural Network,Unmanned Aerial Vehicles,Wireless Sensor Networks and Laser biotechnology. This study’s goal is to find and review about previous approach towards repellent of birds in the crop fields using various technologies. 展开更多
关键词 Bird repellent crop protection IoT UAV Deep Learning
下载PDF
Research Progress on the Growth-Promoting Effect of Plant Biostimulants on Crops
18
作者 Qi Lu Longfei Jin +3 位作者 Cuiling Tong Feng Liu Bei Huang Dejian Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期661-679,共19页
A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency,abioticstress tolerance,and/or crop quality traits,regardless of its nutrient content.The application of Plant b... A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency,abioticstress tolerance,and/or crop quality traits,regardless of its nutrient content.The application of Plant biostimulants(PBs)in production can reduce the application of traditional pesticides and chemical fertilizers and improvethe quality and yield of crops,which is conducive to the sustainable development of agriculture.An in-depthunderstanding of the mechanism and effect of various PBs is very important for how to apply PBs reasonablyand effectively in the practice of crop production.This paper summarizes the main classification of PBs;Thegrowth promotion mechanism of PBs was analyzed from four aspects:improving soil physical and chemical properties,enhancing crop nutrient absorption capacity,photosynthesis capacity,and abiotic stress tolerance;At thesame time,the effects of PBs application on seed germination,seedling vigor,crop yield,and quality were summarized;Finally,how to continue to explore and study the use and mechanism of PBs in the future is analyzedand prospected,to better guide the application of PBs in crop production in the future. 展开更多
关键词 Plant biostimulants growth promoting effect crop production
下载PDF
Advanced Thermochemical Conversion Approaches for Green Hydrogen Production from Crop Residues
19
作者 Omojola Awogbemi Ayotunde Adigun Ojo Samson Adedayo Adeleye 《Journal of Renewable Materials》 EI CAS 2024年第1期1-28,共28页
The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydro... The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues.Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy,mitigating climate change,and ensuring environmental sustainability.However,the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly,requires long residence time,produces low-quality products,and therefore needs to be upgraded.The current review examines the conventional,advanced,and integrated thermochemical conversion technologies for crop residues for green hydrogen production.After a brief overview of the conventional thermochemical techniques,the review delves into the broad narration of advanced thermochemical technologies including catalytic pyrolysis,microwave pyrolysis,co-pyrolysis,hyropyrolysis,and autothermal pyrolysis.The study advocates the deployment of integrated pyrolysis,anaerobic digestion,pyrolysis,and gasification technologies will ensure scalability,decomposition of recalcitrant feedstocks,and generation of high grade green hydrogen.The outlook provides suggestions for future research into cost-saving and sustainable integrated technologies for green hydrogen production towards achieving carbon neutrality and a circular bio-economy. 展开更多
关键词 crop residues carbon neutrality PYROLYSIS GASIFICATION green hydrogen thermochemical conversion
下载PDF
Characterization of Small-Scale Farmers and Assessment of Their Access to Crop Production Information in Selected Counties of Kenya
20
作者 Anastasia Mumbi Wahome John B. K. Kiema +1 位作者 Galcano C. Mulaku Isaac Mukoko 《Agricultural Sciences》 2024年第5期565-589,共25页
Small-scale farming accounts for 78% of total agricultural production in Kenya and contributes to 23.5% of the country’s GDP. Their crop production activities are mostly rainfed subsistence with any surplus being sol... Small-scale farming accounts for 78% of total agricultural production in Kenya and contributes to 23.5% of the country’s GDP. Their crop production activities are mostly rainfed subsistence with any surplus being sold to bring in some income. Timely decisions on farm practices such as farm preparation and planting are critical determinants of the seasonal outcomes. In Kenya, most small-scale farmers have no reliable source of information that would help them make timely and accurate decisions. County governments have extension officers who are mandated with giving farmers advisory services to farmers but they are not able to reach most farmers due to facilitation constraints. The mode and format of sharing information is also critical since it’s important to ensure that it’s timely, well-understood and usable. This study sought to assess access to geospatial derived and other crop production information by farmers in four selected counties of Kenya. Specific objectives were to determine the profile of small-scale farmers in terms of age, education and farm size;to determine the type of information that is made available to them by County and Sub-County extension officers including the format and mode of provision;and to determine if the information provided was useful in terms of accuracy, timeliness and adequacy. The results indicated that over 80% of the farmers were over 35 years of age and over 56% were male. Majority had attained primary education (34%) or secondary education (29%) and most farmers in all the counties grew maize (71%). Notably, fellow farmers were a source of information (71%) with the frequency of sharing information being mostly seasonal (37%) and when information was available (43%). Over 66% of interviewed farmers indicating that they faced challenges while using provided information. The results from the study are insightful and helpful in determining effective ways of providing farmers with useful information to ensure maximum benefits. 展开更多
关键词 Small Scale Farmers FARMERS crop Production Information Services Geospatial Information Information Access
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部