In this paper,we introduce a method of quantitatively evaluating and controlling the space charge effect of a lasercooled three-dimensional(3 D) ion system in a linear Paul trap.The relationship among cooling effici...In this paper,we introduce a method of quantitatively evaluating and controlling the space charge effect of a lasercooled three-dimensional(3 D) ion system in a linear Paul trap.The relationship among cooling efficiency,ion quantity,and trapping strength is analyzed quantitatively,and the dynamic space distribution and temporal evolution of the 3 D ion system on a secular motion period time scale in the cooling process are obtained.The ion number influences the eigen-micromotion feature of the ion system.When trapping parameter q is ~ 0.3,relatively ideal cooling efficiency and equilibrium temperature can be obtained.The decrease of axial electrostatic potential is helpful in reducing the micromotion heating effect and the degradation in the total energy.Within a single secular motion period under different cooling conditions,ions transform from the cloud state(each ion disperses throughout the envelope of the ion system) to the liquid state(each ion is concentrated at a specific location in the ion system) and then to the crystal state(each ion is subjected to a fixed motion track).These results are conducive to long-term storage and precise control,motion effect suppression,high-efficiency cooling,and increasing the precision of spectroscopy for a 3 D ion system.展开更多
The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of ...The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.展开更多
The transport characteristics of a space chargedominated multi-species deuterium beam consisting of D_1^+,D_2^+, and D_3^+ particles in an electrostatic low-energy beam line are studied. First, the envelope equations ...The transport characteristics of a space chargedominated multi-species deuterium beam consisting of D_1^+,D_2^+, and D_3^+ particles in an electrostatic low-energy beam line are studied. First, the envelope equations of the primary D_1^+ beam are derived considering the space charge effects caused by all particles. Second, the evolution of the envelope of the multi-species deuterium beam is simulated using the PIC code TRACK, with the results showing a significant effect of the unwanted beam on the transport of the primary beam. Finally, different injected beam parameters are used to study beam matching, and a new beam extraction system for the existing duoplasmatron source is designed to obtain the ideal injected beam parameters that allow a D_1^+ beam of up to 50 m A to pass unobstructed through the electrostatic low-energy beam transport line in the presence of an unwanted(D_2^+, D_3^+)beam of 20 m A; at the same time, distortions of the beam emittance and particle distributions are observed.展开更多
In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission,...In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.展开更多
The "cascade static lens (CSL) gauge" has a high sensitivity(S) because the emitted electrons repeat the go and back oscillation before they are received by the electrodes. (S=18.6 Pa<sup>-1</su...The "cascade static lens (CSL) gauge" has a high sensitivity(S) because the emitted electrons repeat the go and back oscillation before they are received by the electrodes. (S=18.6 Pa<sup>-1</sup> (2480 Torr<sup>-1</sup> in a展开更多
The nonlinear space charge effect of a bunched beam with Gaussian distribu-tion in the longitudinal direction is discussed.Some useful formulae are derived for cal-culating the potential induced by a cylinder model of...The nonlinear space charge effect of a bunched beam with Gaussian distribu-tion in the longitudinal direction is discussed.Some useful formulae are derived for cal-culating the potential induced by a cylinder model of space charge in the waveguide of alinac with different combinations of density distribution:Gaussian distribution in thelongitudinal direction versus Kapchinskij Vladimirskij,waterbag,parabolic andGaussian distribution in the transverse direction,rcspectively.展开更多
The nonlinear space charge effect of bunched beam with nonuniform densitydistribution in both longitudinal and transverse directions is discussed.Some usefulformulae are derived for calculating the potential induced b...The nonlinear space charge effect of bunched beam with nonuniform densitydistribution in both longitudinal and transverse directions is discussed.Some usefulformulae are derived for calculating the potential induced by a cylinder model of spacecharge in the waveguide of a linac with longitudinal density distributions of waterbag(WB) or parabolic (PA) type combining with transverse density distributions ofKapchinskij-Vladimirskij (K-V).waterbag,parabolic and Gaussian (GA) types,resepectively.展开更多
The concept of Space Charge Capacitance (SCC) is proposed and used to make a novel analytical charge model of quantized inversion layer in MOS structures. Based on SCC, continuous expressions of surface potential and ...The concept of Space Charge Capacitance (SCC) is proposed and used to make a novel analytical charge model of quantized inversion layer in MOS structures. Based on SCC, continuous expressions of surface potential and inversion layer carrier density are derived. Quantum mechanical effects on both inversion layer carrier density and surface potential are extensively included. The accuracy of the model is verified by the numerical solution to Schrodinger and Poisson equation and the model is demonstrated,too.展开更多
Deep dielectric charging/discharging,caused by high energy electrons,is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures.The Jovian p...Deep dielectric charging/discharging,caused by high energy electrons,is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures.The Jovian planets,including Saturn,Uranus,Neptune and Jupiter’s moons,are believed to have robust electron radiation belts at relativistic energies.In particular,Jupiter is thought to have caused at least 42 internal electrostatic discharge events during the Voyager 1 flyby.With the development of deep space exploration,there is an increased focus on the deep dielectric charging effects in the orbits of Jovian planets.In this paper,GEANT4,a Monte Carlo toolkit,and radiation-induced conductivity(RIC)are used to calculate deep dielectric charging effects for Jovian planets.The results are compared with the criteria for preventing deep dielectric charging effects in Earth orbit.The findings show that effective criteria used in Earth orbit are not always appropriate for preventing deep dielectric charging effects in Jovian orbits.Generally,Io,Europa,Saturn(R_S=6),Uranus(L=4.73)and Ganymede missions should have a thicker shield or higher dielectric conductivity,while Neptune(L=7.4)and Callisto missions can have a thinner shield thickness or a lower dielectric conductivity.Moreover,dielectrics grounded with double metal layers and thinner dielectrics can also decrease the likelihood of discharges.展开更多
In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonli...In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC II. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations.展开更多
Purpose Tune shift and spread due to the space charge effects and collective instabilities in intense proton synchrotrons,such as the CSNS/RCS,a rapid cycling synchrotron at China Spallation Neutron Source,are the mai...Purpose Tune shift and spread due to the space charge effects and collective instabilities in intense proton synchrotrons,such as the CSNS/RCS,a rapid cycling synchrotron at China Spallation Neutron Source,are the main causes of beam loss.Tune shift/spread is large when the beam kinetic energy is low and will cause particles to cross dangerous resonances,while they will gradually decay with the increase of kinetic energy.Methods An efficient way,which was verified in operational accelerators,is to tune the working point during different acceleration periods:injection,acceleration and extraction.With the newly added function of time-dependent lattice in the ORBIT code,one can simulate the physical performance with different tune patterns to find the best way to reduce beam loss.Results The method to tune the working point by time-dependent lattice to weaken the crossing of dangerous resonances has been exploited,and implemented in the ORBIT code.It is the first of such try to apply the method in CSNS/RCS.Conclusions The results presented in this paper show that the time-dependent lattice method does help reduce beam loss in the injection and early acceleration.展开更多
By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions ...By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions of the Hamilton principle, describes correlation structures of the elementary objects with oscillator properties. The correlation structures obtained in this way are characterized by physical information, the essential component of which is the action. The correlation structures describe the physical properties and their interactions under the sole condition of the Hamilton’s principle. The structure, the properties and the interactions of elementary objects can be led back in this way to a fundamental four dimensional structure, which is therefore in their different modifications the building block of nature. With the presented method, an alternative interpretation of elementary physical effects to quantum mechanics is obtained. This report provides an overview of the fundamentals and statements of physical information theory and its consequences for understanding the nature of elementary objects.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304401)the National Natural Science Foundation of China(Grant Nos.11622434,11474318,91336211,and 11634013)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21030100)Hubei Province Science Fund for Distinguished Young Scholars(Grant No.2017CFA040)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2015274)
文摘In this paper,we introduce a method of quantitatively evaluating and controlling the space charge effect of a lasercooled three-dimensional(3 D) ion system in a linear Paul trap.The relationship among cooling efficiency,ion quantity,and trapping strength is analyzed quantitatively,and the dynamic space distribution and temporal evolution of the 3 D ion system on a secular motion period time scale in the cooling process are obtained.The ion number influences the eigen-micromotion feature of the ion system.When trapping parameter q is ~ 0.3,relatively ideal cooling efficiency and equilibrium temperature can be obtained.The decrease of axial electrostatic potential is helpful in reducing the micromotion heating effect and the degradation in the total energy.Within a single secular motion period under different cooling conditions,ions transform from the cloud state(each ion disperses throughout the envelope of the ion system) to the liquid state(each ion is concentrated at a specific location in the ion system) and then to the crystal state(each ion is subjected to a fixed motion track).These results are conducive to long-term storage and precise control,motion effect suppression,high-efficiency cooling,and increasing the precision of spectroscopy for a 3 D ion system.
文摘The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.
基金supported by the Fundamental Research Funds for the Central Universities(No.lzujbky-2017-93)the National Natural Science Foundation of China(Nos.11375077,11027508,and21327801)the National Key Scientific Instrument and Equipment Development Projects(No.2013YQ04086101)
文摘The transport characteristics of a space chargedominated multi-species deuterium beam consisting of D_1^+,D_2^+, and D_3^+ particles in an electrostatic low-energy beam line are studied. First, the envelope equations of the primary D_1^+ beam are derived considering the space charge effects caused by all particles. Second, the evolution of the envelope of the multi-species deuterium beam is simulated using the PIC code TRACK, with the results showing a significant effect of the unwanted beam on the transport of the primary beam. Finally, different injected beam parameters are used to study beam matching, and a new beam extraction system for the existing duoplasmatron source is designed to obtain the ideal injected beam parameters that allow a D_1^+ beam of up to 50 m A to pass unobstructed through the electrostatic low-energy beam transport line in the presence of an unwanted(D_2^+, D_3^+)beam of 20 m A; at the same time, distortions of the beam emittance and particle distributions are observed.
基金Project supported by CAST Innovation Fund (Grant No.CAST-BISEE2019-040)。
文摘In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.
文摘The "cascade static lens (CSL) gauge" has a high sensitivity(S) because the emitted electrons repeat the go and back oscillation before they are received by the electrodes. (S=18.6 Pa<sup>-1</sup> (2480 Torr<sup>-1</sup> in a
基金The project supported by the National Natural Science Foundation of China and the Science Foundation of Chinese Nuclear Industry
文摘The nonlinear space charge effect of a bunched beam with Gaussian distribu-tion in the longitudinal direction is discussed.Some useful formulae are derived for cal-culating the potential induced by a cylinder model of space charge in the waveguide of alinac with different combinations of density distribution:Gaussian distribution in thelongitudinal direction versus Kapchinskij Vladimirskij,waterbag,parabolic andGaussian distribution in the transverse direction,rcspectively.
基金the project supported by National Natural Science Foundation of ChinaNSFCChina Science Foundation of Nuclear Indusitry.
文摘The nonlinear space charge effect of bunched beam with nonuniform densitydistribution in both longitudinal and transverse directions is discussed.Some usefulformulae are derived for calculating the potential induced by a cylinder model of spacecharge in the waveguide of a linac with longitudinal density distributions of waterbag(WB) or parabolic (PA) type combining with transverse density distributions ofKapchinskij-Vladimirskij (K-V).waterbag,parabolic and Gaussian (GA) types,resepectively.
文摘The concept of Space Charge Capacitance (SCC) is proposed and used to make a novel analytical charge model of quantized inversion layer in MOS structures. Based on SCC, continuous expressions of surface potential and inversion layer carrier density are derived. Quantum mechanical effects on both inversion layer carrier density and surface potential are extensively included. The accuracy of the model is verified by the numerical solution to Schrodinger and Poisson equation and the model is demonstrated,too.
基金supported by Beijing Municipal Natural Science Foundation-Quantitative Research on Mitigating Deep Dielectric Charging Effects in Jupiter orbits(No.3184048)National Key Scientific Instrument and Equipment Development Projects,China(No.2012YQ03014207)。
文摘Deep dielectric charging/discharging,caused by high energy electrons,is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures.The Jovian planets,including Saturn,Uranus,Neptune and Jupiter’s moons,are believed to have robust electron radiation belts at relativistic energies.In particular,Jupiter is thought to have caused at least 42 internal electrostatic discharge events during the Voyager 1 flyby.With the development of deep space exploration,there is an increased focus on the deep dielectric charging effects in the orbits of Jovian planets.In this paper,GEANT4,a Monte Carlo toolkit,and radiation-induced conductivity(RIC)are used to calculate deep dielectric charging effects for Jovian planets.The results are compared with the criteria for preventing deep dielectric charging effects in Earth orbit.The findings show that effective criteria used in Earth orbit are not always appropriate for preventing deep dielectric charging effects in Jovian orbits.Generally,Io,Europa,Saturn(R_S=6),Uranus(L=4.73)and Ganymede missions should have a thicker shield or higher dielectric conductivity,while Neptune(L=7.4)and Callisto missions can have a thinner shield thickness or a lower dielectric conductivity.Moreover,dielectrics grounded with double metal layers and thinner dielectrics can also decrease the likelihood of discharges.
文摘In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC II. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations.
基金the National Natural Science Foundation of China(Projects:11575214)the National Key Research and Development Program of China(Project:2016YFA0401600)and the CSNS Project.
文摘Purpose Tune shift and spread due to the space charge effects and collective instabilities in intense proton synchrotrons,such as the CSNS/RCS,a rapid cycling synchrotron at China Spallation Neutron Source,are the main causes of beam loss.Tune shift/spread is large when the beam kinetic energy is low and will cause particles to cross dangerous resonances,while they will gradually decay with the increase of kinetic energy.Methods An efficient way,which was verified in operational accelerators,is to tune the working point during different acceleration periods:injection,acceleration and extraction.With the newly added function of time-dependent lattice in the ORBIT code,one can simulate the physical performance with different tune patterns to find the best way to reduce beam loss.Results The method to tune the working point by time-dependent lattice to weaken the crossing of dangerous resonances has been exploited,and implemented in the ORBIT code.It is the first of such try to apply the method in CSNS/RCS.Conclusions The results presented in this paper show that the time-dependent lattice method does help reduce beam loss in the injection and early acceleration.
文摘By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions of the Hamilton principle, describes correlation structures of the elementary objects with oscillator properties. The correlation structures obtained in this way are characterized by physical information, the essential component of which is the action. The correlation structures describe the physical properties and their interactions under the sole condition of the Hamilton’s principle. The structure, the properties and the interactions of elementary objects can be led back in this way to a fundamental four dimensional structure, which is therefore in their different modifications the building block of nature. With the presented method, an alternative interpretation of elementary physical effects to quantum mechanics is obtained. This report provides an overview of the fundamentals and statements of physical information theory and its consequences for understanding the nature of elementary objects.