The article develops a cosmological model based on a hypothesis that dark energy is a cosmological variable rather than a constant. A companion paper (DEH I) derives a formula for this variable cosmological parameter ...The article develops a cosmological model based on a hypothesis that dark energy is a cosmological variable rather than a constant. A companion paper (DEH I) derives a formula for this variable cosmological parameter as well as an argument that the early universe produces it and dark matter. The developed model leads to a series of self-consistent results including a prediction that provides a test for it. The results include comparisons of the DEH and the ΛCDM theory.展开更多
A dynamic space coupling model is developed for simulating the vibrations of wheel/rail systems as well as the torsion and bending vibrations of wheelsets. It is found that the slip stick vibrations of wheelsets are ...A dynamic space coupling model is developed for simulating the vibrations of wheel/rail systems as well as the torsion and bending vibrations of wheelsets. It is found that the slip stick vibrations of wheelsets are mainly caused and controlled by the crossing excitation or self excitation of the vertical vibrations of the whole system and by the bending vibrations and torsion vibrations of the wheelsets. It is found for the first time that the slip stick vibrations may occur in more than one forms, and one or another of the three kinds of vibrations is excited more strongly. Four typical kinds of slip stick vibrations are enumerated and described. The field investigation on rail corrugations shows that the four kinds of slip stick vibrations are most likely to exist and related with different corrugated features.展开更多
In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array ...In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array output and mutual coupling coefficients, we present a novel model of the array output with the unknown mutual coupling coefficients. Based on this model, we use the space alternating generalized expectation-maximization(SAGE) algorithm to jointly estimate the DOA parameters and the mutual coupling coefficients. Unlike many existing counterparts, our method requires neither calibration sources nor initial calibration information. At the same time,our proposed method inherits the characteristics of good convergence and high estimation precision of the SAGE algorithm. By numerical experiments we demonstrate that our proposed method outperforms the existing method for DOA estimation and mutual coupling calibration.展开更多
文摘The article develops a cosmological model based on a hypothesis that dark energy is a cosmological variable rather than a constant. A companion paper (DEH I) derives a formula for this variable cosmological parameter as well as an argument that the early universe produces it and dark matter. The developed model leads to a series of self-consistent results including a prediction that provides a test for it. The results include comparisons of the DEH and the ΛCDM theory.
文摘A dynamic space coupling model is developed for simulating the vibrations of wheel/rail systems as well as the torsion and bending vibrations of wheelsets. It is found that the slip stick vibrations of wheelsets are mainly caused and controlled by the crossing excitation or self excitation of the vertical vibrations of the whole system and by the bending vibrations and torsion vibrations of the wheelsets. It is found for the first time that the slip stick vibrations may occur in more than one forms, and one or another of the three kinds of vibrations is excited more strongly. Four typical kinds of slip stick vibrations are enumerated and described. The field investigation on rail corrugations shows that the four kinds of slip stick vibrations are most likely to exist and related with different corrugated features.
基金supported by the National Natural Science Foundation of China (No. 61302141)
文摘In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array output and mutual coupling coefficients, we present a novel model of the array output with the unknown mutual coupling coefficients. Based on this model, we use the space alternating generalized expectation-maximization(SAGE) algorithm to jointly estimate the DOA parameters and the mutual coupling coefficients. Unlike many existing counterparts, our method requires neither calibration sources nor initial calibration information. At the same time,our proposed method inherits the characteristics of good convergence and high estimation precision of the SAGE algorithm. By numerical experiments we demonstrate that our proposed method outperforms the existing method for DOA estimation and mutual coupling calibration.