期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Space moving target detection using time domain feature
1
作者 王敏 陈金勇 +1 位作者 高峰 赵金宇 《Optoelectronics Letters》 EI 2018年第1期67-70,共4页
The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space ... The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space moving target detection method based on time domain features. We firstly construct the time spectral data of star map, then analyze the time domain features of the main objects(target, stars and the background) in star maps, finally detect the moving targets using single pulse feature of the time domain signal. The real star map target detection experimental results show that the proposed method can effectively detect the trajectory of moving targets in the star map sequence, and the detection probability achieves 99% when the false alarm rate is about 8×10^(-5), which outperforms those of compared algorithms. 展开更多
关键词 AS space moving target detection using time domain feature
原文传递
Identification of crack in a structural member using improved radial basis function(IRBF)neural networks 被引量:1
2
作者 Rajendra Machavaram Shankar Krishnapillai 《International Journal of Intelligent Computing and Cybernetics》 EI 2013年第2期182-211,共30页
Purpose–The purpose of this paper is to provide an effective and simple technique to structural damage identification,particularly to identify a crack in a structure.Artificial neural networks approach is an alternat... Purpose–The purpose of this paper is to provide an effective and simple technique to structural damage identification,particularly to identify a crack in a structure.Artificial neural networks approach is an alternative to identify the extent and location of the damage over the classical methods.Radial basis function(RBF)networks are good at function mapping and generalization ability among the various neural network approaches.RBF neural networks are chosen for the present study of crack identification.Design/methodology/approach–Analyzing the vibration response of a structure is an effective way to monitor its health and even to detect the damage.A novel two-stage improved radial basis function(IRBF)neural network methodology with conventional RBF in the first stage and a reduced search space moving technique in the second stage is proposed to identify the crack in a cantilever beam structure in the frequency domain.Latin hypercube sampling(LHS)technique is used in both stages to sample the frequency modal patterns to train the proposed network.Study is also conducted with and without addition of 5%white noise to the input patterns to simulate the experimental errors.Findings–The results show a significant improvement in identifying the location and magnitude of a crack by the proposed IRBF method,in comparison with conventional RBF method and other classical methods.In case of crack location in a beam,the average identification error over 12 test cases was 0.69 per cent by IRBF network compared to 4.88 per cent by conventional RBF.Similar improvements are reported when compared to hybrid CPN BPN networks.It also requires much less computational effort as compared to other hybrid neural network approaches and classical methods.Originality/value–The proposed novel IRBF crack identification technique is unique in originality and not reported elsewhere.It can identify the crack location and crack depth with very good accuracy,less computational effort and ease of implementation. 展开更多
关键词 Structures Stress(materials) Mechanical behaviour of materials BEAMS Structural members Crack identification Structural damage Frequency domain Latin hypercube sampling Improved radial basis function neural networks Reduced search space moving technique
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部